

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Vitor Manuel Enes Duarte

Efficient Synchronization of State-based CRDTs

November 2017

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Vitor Manuel Enes Duarte

Efficient Synchronization of State-based CRDTs

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Carlos Miguel Ferraz Baquero Moreno
João Carlos Antunes Leitão

November 2017

A C K N O W L E D G M E N T S

I would like to thank my advisors, Carlos Baquero and João Leitão, for their support and
great advice. A special thanks to Paulo Sérgio Almeida, Ali Shoker and Georges Younes
for all the insightful discussions. At last, to my family and friends, thank you for all the
support and motivation you gave, and all the patience you had.

i

A B S T R A C T

Data consistency often needs to be sacrificed in order to ensure high-availability in large
scale distributed systems. Conflict-free Replicated Data Types relax consistency by always al-
lowing query and update operations at the local replica without remote synchronization.
Consistency is then re-established by a background mechanism that synchronizes the repli-
cas in the system.

In state-based CRDTs replicas synchronize by periodically sending their local state to
other replicas and by merging the received remote states with the local state. This synchro-
nization can become very costly and unacceptable as the local state grows.

Delta-state-based CRDTs solve this problem by producing smaller messages to be prop-
agated. However, it requires each replica to store additional metadata with the messages
not seen by its direct neighbors in the system. This metadata may not be available after a
network partition, since a replica can be forced to garbage-collect it (due to storage/mem-
ory limitations), or when the set of direct neighbors of a replica changes (due to dynamic
memberships).

In this dissertation we further improve the synchronization of state-based CRDTs, by
introducing the concept of Join Decomposition of a state-based CRDT and explaining how
it can be used to reduce the synchronization cost of this variant of CRDTs.

We validate our proposal experimentally on Google Cloud Platform by comparing the
state-based synchronization algorithm against the classic and improved versions of the
delta-state-based algorithm. The results of this comparison show that our proposed tech-
niques can greatly reduce state transmission, even under normal operation when the net-
work is stable.

iii

R E S U M O

Frequentemente a consistência dos dados é sacrificada para garantir alta-disponibilidade
em sistemas distribuı́dos de grande escala. Conflict-free Replicated Data Types relaxam a
consistência permitindo operaçõess de query e update na réplica local sem sincronização
remota.

Nos state-based CRDTs as réplicas sincronizam periodicamente enviando o seu estado
local para as outras réplicas e combinando os estados remotos recebidos com o estado local.
Esta sincronização pode tornar-se muito custosa e inaceitável à medida que o estado local
cresce.

Delta-state-based CRDTs resolvem este problema produzindo mensagens mais pequenas
para serem propagadas. No entanto, requer guardar metadados adicionais com as men-
sagens que ainda não foram vistas pelos vizinhos diretos no sistema. Estes metadados
podem não estar disponı́veis depois de uma partição na rede, visto que a réplica pode
ser forçada a apagá-los (devido a limitações de armazenamento/memória), ou quando o
conjunto dos vizinhos diretos da réplica muda (devido a vistas dinâmicas).

Nesta dissertação melhoramos ainda mais a sincronização de state-based CRDTs, intro-
duzindo o conceito de Join Decomposition de um state-based CRDT e explicando como é
que pode ser usado para reduzir o custo de sincronização desta variante de CRDTs.

Validamos a nossa proposta experimentalmente na Google Cloud Platform comparando
o algoritmo de sincronização de state-based CRDTs com a clássica e melhoradas versões do
algoritmo dos delta-state-based. Os resultados desta comparação mostram que as técnicas
propostas podem reduzir muito a transmissão de dados, mesmos em operação normal
quando a rede está estável.

v

C O N T E N T S

1 introduction 3

1.1 Context 3

1.2 Motivation 4

1.3 Problem Statement 4

1.4 Main Contributions 4

1.5 Dissertation Outline 5

2 synchronization of state-based crdts 7

2.1 System model 7

2.2 State-based 8

2.2.1 Mutators 9

2.2.2 Synchronization algorithm 9

2.3 Delta-state-based 11

2.3.1 δ-mutators 11

2.3.2 Synchronization algorithm 13

2.4 Portfolio 15

2.5 Summary 19

3 join decompositions 21

3.1 Join Decompositions of State-based CRDTs 22

3.1.1 Join-irreducible states 22

3.2 Efficient Synchronization of State-based CRDTs 23

3.2.1 State-driven Synchronization 24

3.2.2 Digest-driven Synchronization 25

3.3 Portfolio 27

3.4 Summary 31

4 delta-state-based synchronization algorithm revisited 33

4.1 Avoiding back-propagation of δ-groups 33

4.2 Removing redundant state in δ-groups 34

4.3 Synchronizing with a new neighbor 35

4.4 Summary 36

5 evaluation 37

5.1 Experimental Setup 37

5.2 Results 41

5.2.1 State-based, state-driven and digest-driven synchronization algorithms 41

vii

viii Contents

5.2.2 Delta-state-based synchronization algorithm 43

5.2.3 Delta-state-based with state-driven and digest-driven synchronization
algorithms 46

5.3 Summary 47

6 conclusion 49

Appendix a topologies 55

L I S T O F F I G U R E S

Figure 2.1 Hasse diagram of GSet〈{a, b, c}〉 9

Figure 2.2 Specification of GSet〈E〉 9

Figure 2.3 Synchronization of a GSet〈E〉 with three nodes connected in a line
topology 10

Figure 2.4 Ideal synchronization of a GSet〈E〉 with three nodes connected in a
line topology 11

Figure 2.5 Specification of GSetδ〈E〉 12

Figure 2.6 Specification of GSetδ〈E〉 with minimum δ-mutators 13

Figure 2.7 Synchronization of a GSetδ〈E〉 with three nodes connected in a ring
topology avoiding back-propagation of δ-groups 14

Figure 2.8 Synchronization of a GSetδ〈E〉 with three nodes connected in a ring
topology avoiding back-propagation of δ-groups and removing re-
dundant state present in the received δ-groups 15

Figure 2.9 Specification of TwoPSetδ〈E〉 on replica i 16

Figure 2.10 Specification of PCounterδ on replica i 16

Figure 2.11 Specification of PNCounterδ on replica i 17

Figure 2.12 Specification of AWSetδ〈E〉 on replica i 19

Figure 3.1 State-driven synchronization of a GSet〈E〉 with two nodes connected
in a line topology 25

Figure 3.2 Digest-driven synchronization of a GSet〈E〉with two nodes connected
in a line topology 26

Figure 3.3 digest and inf functions for GSet〈E〉 26

Figure 3.4 Digest-driven synchronization of a GSet〈E〉with two nodes connected
in a line topology using a non-injective digest function 27

Figure 3.5 Specification of join-decomposition, digest, and inflation check func-
tions for GSet〈E〉 28

Figure 3.6 Specification of join-decomposition, digest, and inflation check func-
tions for TwoPSet〈E〉 29

Figure 3.7 Specification of join-decomposition, digest, and inflation check func-
tions for PCounter 29

Figure 3.8 Specification of join-decomposition, digest, and inflation check func-
tions for PNCounter 30

ix

x List of Figures

Figure 3.9 Specification of join-decomposition, digest, and inflation check func-
tions for AWSet〈E〉 31

Figure 5.1 Dashboard 40

Figure 5.2 Accumulated transmission of state-based, state-driven and digest-driven
algorithms for line, ring and HyParView topologies 41

Figure 5.3 Local and remote latency CDF of state-based, state-driven and digest-
driven algorithms for HyParView topology 42

Figure 5.4 Accumulated transmission of state-based, delta-based, delta-based
BP, delta-based RR and delta-based BP+ RR algorithms for line, ring
and HyParView topologies 44

Figure 5.5 Local and remote latency CDF of state-based, delta-based, delta-
based BP, delta-based RR and delta-based BP+ RR algorithms for
HyParView topology 45

Figure 5.6 Accumulated transmission of delta-based BP+ RR, delta-based BP+ RR

with state-driven and delta-based BP+ RR with digest-driven algo-
rithms for ring topology with induced partitions 46

Figure 5.7 Local and remote latency CDF of algorithms delta-based BP+ RR,
delta-based BP+ RR with state-driven and delta-based BP+ RR with
digest-driven for ring topology with induced partitions 47

L I S T O F A L G O R I T H M S

1 State-based synchronization algorithm on replica i 10

2 Delta-state-based synchronization algorithm on replica i 14

3 State-driven synchronization algorithm on replica i 24

4 State-driven and Digest-driven synchronization algorithms on replica i 28

5 Delta-state-based synchronization algorithm avoiding back-propagation of δ-
groups and removing redundant state present in the received δ-groups on
replica i . 34

6 Delta-state-based synchronization algorithm avoiding back-propagation of δ-
groups, removing redundant state present in the received δ-groups, and re-
sorting to State-driven and Digest-driven synchronization algorithms when syn-
chronizing with new neighbors on replica i . 36

1

1

I N T R O D U C T I O N

1.1 context

Large-scale distributed systems resorting to replication techniques often need to sacrifice
the consistency of the system in order to attain high-availability. One common approach is
to allow replicas of some data type to temporarily diverge, making sure these replicas will
eventually converge to the same state in a deterministic way. Conflict-free Replicated Data
Types (CRDTs) [26, 27] can be used to achieve this.

It’s possible to design CRDTs that emulate the behavior of a sequential data type, but
some effort has to be done in order to resolve conflicts that result from operations that are
not commutative in their sequential form, such as adding and removing the same element
from a Set, for example. Therefore, there are design options that need to be made when im-
plementing a CRDT, in particular regarding its semantics for non-commutative operations
(add-wins, remove-wins, . . .) to ensure these data types converge deterministically for the
chosen semantic (which might be application specific). Hence, multiple CRDTs can exist to
materialize a single sequential data type [3, 8].

CRDTs come mainly in two flavors: operation-based and state-based. In both, queries
and updates are always possible at the local replica, the source of these operations, and
this is why the system is available (as it never needs to coordinate with remote replicas
to execute operations). Operation-based CRDTs perform update operations in two phases:
prepare and effect. The prepare phase, at the source of the operation, produces a message
(that represents that operation) to be sent to all replicas, using a reliable causal broadcast
channel. Once delivered, this message is applied using effect. These messages have to be
delivered exactly once since the operations they represent might not be idempotent. State-
based CRDTs need fewer guaranties from the communication channel: messages can be
dropped, duplicated and reordered, and the system state remains convergent. When an
update operation occurs, the local state is updated through a mutator, and from time to
time (since we can disseminate the state at a lower rate than the rate of the updates) the
state is propagated to the other replicas. When a replica receives the remote state of another

3

4 Chapter 1. introduction

replica, it merges this remote state with its local state using a binary join operator that is
designed to be idempotent, commutative and associative.

1.2 motivation

Although state-based CRDTs can be disseminated over unreliable communication channels,
as the state grows, sending the full state can be very costly and become unacceptable. Delta-
state-based CRDTs (δ-CRDTs) [2, 3] address this issue, by defining δ-mutators that return
a delta (δ), typically much smaller than the full state of the replica, to be merged with the
local state and propagated to remote replicas. This strategy requires keeping track of which
updates have been effectively received by other replicas of the system with which the local
replica exchanges information (i.e. synchronizes) directly, which leads to the maintenance
of additional metadata that may have to be garbage collected (due to storage limitations) or
not be available (due to dynamic memberships).

1.3 problem statement

Current solutions perform bidirectional full state transmission when a replica joins a sys-
tem (either for the first time or after a network partition) in order to this replica receive the
missed updates and to propagate the ones observed locally. This strategy can be unaccept-
able when the size of the CRDT state is not small. After this initial synchronization, replicas
can synchronize with a neighbor replica by sending groups of δs (all the δs that haven’t been
received by that neighbor), avoiding full state transmission on each synchronization step.
However, careful must be taken when computing these groups of δs: we have noticed some
executions where this optimization is equivalent to state-based synchronization.

1.4 main contributions

In this thesis we revisit the delta-state-based synchronization algorithm and propose modi-
fications that further reduce the amount of state transmitted. We also introduce the concept
of Join Decomposition of a state-based CRDT, and present two novel algorithms, state-driven
and digest-driven, used for efficient synchronization of state-based CRDTs when the meta-
data storage required for delta-state-based synchronization is not available.

A preliminary version of part of the work described in this thesis was published in the
following workshop paper:

- Join Decompositions for Efficient Synchronization of CRDTs after a Network Parti-
tion: Work in progress report Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and

1.5. Dissertation Outline 5

Ali Shoker. First Workshop on Programming Models and Languages for Distributed
Computing. PMLDC@ECOOP 2016 [17]

1.5 dissertation outline

The rest of this dissertation is organized as follows. Chapter 2 presents current strategies
to synchronize state-based CRDTs. Chapter 3 introduces the concept of Join Decomposi-
tion and explains how it can be used to efficiently synchronize state-based CRDTs when
no metadata is available, presenting two synchronization algorithms: state-driven and digest-
driven. Chapter 4 revisits the classic delta-state-based synchronization algorithm and pro-
poses some modifications that reduce state transmission. In Chapter 5, we evaluate the
synchronization algorithms presented in Chapter 2, 3 and 4. Finally, in Chapter 6, we
conclude this dissertation and present some ideas for future research.

2

S Y N C H R O N I Z AT I O N O F S TAT E - B A S E D C R D T S

Data replication is used to increase the performance and availability of distributed systems:
geo-distributed replicas give us low-latency links increasing performance, and the system
remains available even when some replicas are unreachable . Traditional techniques adopt-
ing strong consistency give the illusion of a single copy of data by synchronizing replicas
on each update. Within the data center, these techniques have been proven very successful
[23], but are clearly not suited for wide-area networks, where the synchronization required
between replicas increases the latency of requests, and decreases the system’s throughput.

There is a well known trade-off [18] in replicated distributed systems: if we want to
tolerate network partitions (which effectively happen on wide-area networks [4]), a system
can either be highly available or strongly consistent. Pessimistic replication give us the
later, while in optimistic replication [25], data consistency is sacrificed in exchange for
higher availability. Updates are processed locally and propagated to other replicas in the
background, improving the availability of the system: each replica can keep operating even
if it can’t communicate with others.

In this chapter we start by presenting the system model assumed throughout this thesis.
We then present recent data types designs for optimistic replication called Conflict-free Repli-
cated Data Types (CRDTs) [26] and two different synchronization strategies for state-based
CRDTs: state-based synchronization in Section 2.2 and delta-state-based synchronization in
Section 2.3. A portfolio of CRDTs is presented in Section 2.4, and the chapter is concluded
in Section 2.5.

2.1 system model

Consider a distributed system with nodes containing local memory, with no shared mem-
ory between them. Any node can send messages to any other node. The network is asyn-
chronous; there is no global clock, no bound on the time a message takes to arrive, and
no bounds on relative processing speeds. The network is unreliable: messages can be lost,
duplicated or reordered (but are not corrupted). Some messages will, however, eventually
get through: if a node sends infinitely many messages to another node, infinitely many of

7

8 Chapter 2. synchronization of state-based crdts

these will be delivered. In particular, this means that there can be arbitrarily long parti-
tions, but these will eventually heal. Nodes have access to durable storage; they can crash
but will eventually recover with the content of the durable storage just before the crash
occurred. Durable state is written atomically at each state transition. Each node has access
to its globally unique identifier in a set I.

2.2 state-based

A state-based CRDT can be defined as a triple (S,v,t) where S is a join-semilattice (lattice
from now on), v its partial order and t is a binary join operator that derives the least upper
bound for every two elements of S, such that ∀s, t, u ∈ S

s t s = s (idempotence)

s t t = t t s (commutativity)

s t (t t u) = (s t t) t u (associativity)

These properties allow the use of unreliable communication channels when operating
with state-based CRDTs as reordering and duplication of messages won’t affect the conver-
gence of the system [26]. Moreover, messages can be lost without compromising the correct-
ness of the replicated system (i.e. convergence) since the local state is non-decreasing across
updates (as we further discuss in Subsection 2.2.1): a message containing the updated state
makes messages containing the previous states redundant.

Several state-based CRDTs can be found in the literature [3, 15, 16, 27]. One of the
primitive lattices [6] is MaxInt = (N,≤,max) where N is the set of natural numbers, ≤ a
total order over the set, and max the binary join operator that returns the maximum of two
elements, accordingly to ≤. Another lattice can be constructed from any set of elements
E, by taking the set of all subsets of E, P(E), and specifying (P(E),⊆,∪) where ⊆ is set
inclusion and ∪ the operator that returns the union of two sets. This defines a known CRDT
called grow-only set, GSet〈E〉, and Figure 2.1 shows its Hasse diagram with E = {a, b, c}.

Typically these lattices are bounded lattices, thus a bottom value ⊥ is defined. For MaxInt,
⊥ = 0 and for GSet〈E〉, ⊥ = {}.

2.2. State-based 9

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{}

Figure 2.1.: Hasse diagram of GSet〈{a, b, c}〉

2.2.1 Mutators

State-based CRDTs are updated through a set of mutators M designed to be inflations. We
say that t ∈ S is an inflation of s ∈ S if s v t. Thus, for every mutator m ∈ M, the following
holds:

∀s ∈ S · s v m(s)

Figure 2.2 shows a complete specification of a GSet〈E〉, including its mutator add.

GSet〈E〉 = P(E)
⊥ = {}

add(e, s) = s ∪ {e}
value(s) = s

s t s′ = s ∪ s′

Figure 2.2.: Specification of GSet〈E〉

Note that the specification in Figure 2.2 does not define the partial order since it can
always be defined, for any state-based CRDT S, in terms of its binary join operator t:

∀s, t ∈ S · s v t⇔ s t t = t

2.2.2 Synchronization algorithm

Algorithm 1 presents a synchronization algorithm for state-based CRDTs. Each node i ∈ I
(where I is the set of node identifiers) is connected with a set of neighbors ni ∈ P(I)
(line 2) and has in its local durable storage a state-based CRDT S (line 4). When update
operations are performed (line 7) the local state Xi is updated with the result of the mutator.

10 Chapter 2. synchronization of state-based crdts

Periodically, Xi is propagated to all neighbors (line 9), behaving as a flood protocol [22].
When a node receives some remote state s (line 5), it updates its local state with the result
of the binary join of its local state Xi and the received remote state s.

1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state, X0

i = ⊥
5 on receivej,i(state, s)
6 X′i = Xi t s

7 on operationi(m)
8 X′i = m(Xi)

9 periodically // ship state
10 for j ∈ ni
11 sendi,j(state, Xi)

Algorithm 1: State-based synchronization algorithm on replica i

This approach can be problematic since the local state has always to be propagated to
the neighbors in the system. When the state grows significantly, this might affect the usage
of system resources (such as network) with a negative impact on the system performance.
However, if each node keeps track of the updates effectively received and processed by its
neighbors, it will be able to send a smaller amount of information than the (complete) local
state, that represents the state changes since the last synchronization with that neighbor
(Subsection 2.3).

Figure 2.3 illustrates an execution with three nodes, A, B and C connected in a line
topology s.t. A→ B→ C (Appendix A), synchronizing a state-based GSet〈E〉:

- all nodes start from bottom value ⊥ = {}

- synchronization with neighbors is represented by •

A {} {b} add a // {a, b} •
{a,b}

��

{a, b, c}

B {} add b // {b} •
{b}

DD

{b}

��

{a, b} {a, b, c} •
{a,b,c}

@@

{a,b,c}

��
C {} // {b} add c // {b, c} •

{b,c}

@@

{a, b, c}

Figure 2.3.: Synchronization of a GSet〈E〉 with three nodes connected in a line topology

In this execution, node B starts by adding b to the set, and then synchronizes with its
neighbors, nodes A and C, by sending its full state. When these nodes receive the state
from B, they merge the received state {b} with their local state. Then, A adds a to the
set, and sends the resulting state {a, b} to its neighbor B; node C adds c, and synchronizes
with B by sending its local state {a, c}; node B merges these two states with its local state

2.3. Delta-state-based 11

resulting in a new state {a, b, c}. Finally, B synchronizes again with its neighbors A and C,
and all nodes converge to the same state.

2.3 delta-state-based

In Figure 2.3 we can notice that, as the state grows, sending the full state can become very
expensive. Ideally, as shown in Figure 2.4, a node will only propagate the most recent
modifications incurred in its local state.

A {} {b} add a // {a, b} •
{a}

��

{a, b, c}

B {} add b // {b} •
{b}

DD

{b}

��

{a, b} {a, b, c} •
{c}

@@

{a}

��
C {} // {b} add c // {b, c} •

{c}

@@

{a, b, c}

Figure 2.4.: Ideal synchronization of a GSet〈E〉 with three nodes connected in a line topology

Delta-state-based CRDTs [2, 3] can be used to achieve this, by modifying the current
specification of mutators to return a different state, smaller than the full state, that when
merged with the local state, produces the same inflation: the resulting state is the same as
it would have been if the mutator was applied. These new mutators are called δ-mutators.

2.3.1 δ-mutators

In Section 2.2 we saw that state-based CRDTs are equipped with a set of mutators M.
Each of these mutators m ∈ M, has in delta-state-based CRDTs a correspondent δ-mutator
mδ ∈ Mδ such that respects the following property:

∀s ∈ S ·m(s) = s tmδ(s) (1)

Figure 2.5 shows a complete specification of a GSetδ〈E〉, including its δ-mutator addδ.

12 Chapter 2. synchronization of state-based crdts

GSetδ〈E〉 = P(E)
⊥ = {}

addδ(e, s) = {e}
value(s) = s

s t s′ = s ∪ s′

Figure 2.5.: Specification of GSetδ〈E〉

The δ-mutator addδ respects the aforementioned Property 1:

∀e ∈ E, ∀s ∈ S · add(e, s) = s t addδ(e, s) (prop. 1)

s ∪ {e} = s t addδ(e, s) (def. add)

s ∪ {e} = s t {e} (def. addδ)

s ∪ {e} = s ∪ {e} (def. t)

Besides respecting Property 1, the δ-state resulting from the δ-mutators should be the
smallest state in the lattice (in terms of the partial order) causing that inflation in the local
state:

∀s, t ∈ S · s tmδ(s) = s t t⇒ mδ(s) v t (2)

δ-mutators that respect Property 2 are called minimum δ-mutators. The δ-mutator addδ

presented in the GSetδ〈E〉 specification (Figure 2.5) is not minimum (proof by counterexam-
ple):

∀s, t ∈ S · s t addδ(e, s) = s t t⇒ addδ(e, s) v t (prop. 2)

{a, b} t addδ(a, {a, b}) = {a, b} t {} ⇒ addδ(a, {a, b}) v {} (e = a, s = {a, b}, t = {})

{a, b} t {a} = {a, b} t {} ⇒ {a} v {} (def. addδ)

{a, b} = {a, b} ⇒ {a} ⊆ {} (def. t, def. ∪, def. v)

True⇒ False (def. ⊆)

By instantiating e = a, s = {a, b} and t = {}, we reach a contradiction, proving that addδ

is not a minimum δ-mutator. In order to have a minimum δ-mutator addδ, we need to inspect
the local state (as is typically the case for state-based CRDTs) to decide the resulting δ-state.
Figure 2.6 shows a modified specification of GSetδ〈E〉 with minimum δ-mutators.

2.3. Delta-state-based 13

GSetδ〈E〉 = P(E)
⊥ = {}

addδ(e, s) =

{
{e} if e 6∈ s
{} otherwise

value(s) = s
s t s′ = s ∪ s′

Figure 2.6.: Specification of GSetδ〈E〉 with minimum δ-mutators

2.3.2 Synchronization algorithm

Algorithm 2 presents a synchronization algorithm for delta-state-based CRDTs [3]. Each
node i ∈ I, besides having in a durable storage the CRDTs state Xi, it stores a monotonic
increasing sequence counter ci (line 3). If ci = 5, it means that the local state has suffered
five inflations, either by local operations, or by merging some received remote state. As a
volatile state (line 6), each node keeps an acknowledge (ack) map Ai from node identifier
to a sequence counter n ∈ N and a δ-buffer Bi which maps sequence numbers n ∈ N to
lattice states s ∈ S. When operations are performed (line 17), the result of the δ-mutator is
merged with the local state Xi and added to the δ-buffer map Bi with the current sequence
counter ci as a key. Periodically, a δ-group is propagated to neighbors (line 22). This δ-
group can either be the local state when the content of the δ-buffer is more advanced that
the last received ack from that neighbor, or the join of all entries in the δ-buffer that have
not been acknowledged by that neighbor. When a node receives some remote δ-group (line
9), it replies with an ack (line 14). If the received δ-group will inflate the local state, then
it’s merged with the local state and added to the δ-buffer with ci as key. When an ack is
received (line 15), the ack map Ai is updated with the max of the received sequence number
and the current sequence number stored in the map. Garbage collection on the δ-buffer is
periodically performed (line 30) by removing the entries that have been acknowledged by
all neighbors.

Following this algorithm won’t result in the desired execution scenario presented in Fig-
ure 2.4. In fact, for that example, this algorithm will transmit the same state as the state-
based synchronization algorithm would (Figure 2.3). However, if each node keeps track of
the origin of the entries in the δ-buffer, and filters them out when computing the δ-group
that has to be sent to each neighbor, we’ll have the ideal synchronization shown in Figure
2.4. This technique, avoiding back-propagation of δ-groups, is further explained in Chapter 4

when proposing modifications to the classic delta-state-based algorithm.

14 Chapter 2. synchronization of state-based crdts

1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state, X0

i = ⊥
5 ci ∈ N, sequence number, c0

i = 0
6 volatile state:
7 Ai ∈ I ↪→ N, ack map, A0

i = {}
8 Bi ∈ N ↪→ S, buffer, B0

i = {}
9 on receivej,i(delta, d, n)

10 if d 6v Xi
11 X′i = Xi t d
12 B′i = Bi{ci 7→ d}
13 c′i = ci + 1
14 sendi,j(ack, n)
15 on receivej,i(ack, n)
16 A′i = Ai{j 7→ max(Ai(j), n)}

17 on operationi(m
δ)

18 d = mδ(Xi)
19 X′i = Xi t d
20 B′i = Bi{ci 7→ d}
21 c′i = ci + 1
22 periodically // ship interval or state
23 for j ∈ ni
24 if Bi = {} ∨ min(dom(Bi)) > Ai(j)
25 d = Xi
26 else
27 d =

⊔{Bi(l) | Ai(j) ≤ l < ci}
28 if Ai(j) < ci
29 sendi,j(delta, d, ci)

30 periodically // garbage collect deltas
31 l = min{n | (, n) ∈ Ai}
32 B′i = {(n, d) ∈ Bi | n ≥ l}

Algorithm 2: Delta-state-based synchronization algorithm on replica i

Figure 2.7 shows the previously shown example but with the three nodes connected in
a ring topology. This execution avoids back-propagation of δ-groups, otherwise we would
observe full state being sent in every synchronization among neighbors.

A {} {b} add a // {a, b} •
{a}

��

{a,b}
��

{a, b, c} {a, b, c}

B {} add b // {b} •
{b}

DD

{b}

��

{a, b} {a, b, c} •
{a,b,c}

2
@@

{a}

��
C {} // {b} add c // {b, c} {a, b, c} •

{a,b,c}

1
@@

{b,c}

HH

{a, b, c}

Figure 2.7.: Synchronization of a GSetδ〈E〉 with three nodes connected in a ring topology avoiding
back-propagation of δ-groups

Arrows 1 and 2 can be improved by removing the redundant state present in the received
δ-groups, before adding them to the δ-buffer. For example, when node C receives {a, b},
instead of adding {a, b} to the δ-buffer, it should only add what causes the inflation in its
local state, i.e., {a}. Then, instead of computing {a, b, c} as the δ-group that should be sent
to node B (arrow 1), it will compute {a, c}, as we can see in Figure 2.8.

This technique, removing redundant state in δ-groups, is presented in Chapter 4.

2.4. Portfolio 15

A {} {b} add a // {a, b} •
{a}

��

{a,b}
��

{a, b, c} {a, b, c}

B {} add b // {b} •
{b}

DD

{b}

��

{a, b} {a, b, c} •
{c}

@@

{a}

��
C {} // {b} add c // {b, c} {a, b, c} •

{a,c}

@@

{b,c}

HH

{a, b, c}

Figure 2.8.: Synchronization of a GSetδ〈E〉 with three nodes connected in a ring topology avoiding
back-propagation of δ-groups and removing redundant state present in the received
δ-groups

2.4 portfolio

This section presents a portfolio of state-based CRDTs. In each specification we only define
δ-mutators, since the mutator can always be derived using the correspondent δ-mutator, by
Property 1. Also, δ-mutators are parameterized by node identifier i ∈ I, even if its behavior
does not depend on which replica it is invoked.

two-phase set

The only data type introduced so far, GSetδ〈E〉, only allows elements to be added to the
set. It is possible to define a new set data type, TwoPSetδ〈E〉, that allows additions and
removals by pairing two grow-only set, using the product × composition technique [6].

The product A× B combines two lattices A and B, producing a lattice pair. The join of
two pairs (a, b), (a′, b′) ∈ A× B, merges each component of the pairs, and it is defined as:

(a, b) t (a′, b′) = (a t a′, b t b′)

The specification of this data type, called two-phase set, can be found in Figure 2.9. To add
an element to the set, we use mutator addδ, which adds the element to the first component
of the pair. Similarly, when we remove an element, we add it to the second component of
the pair, using mutator removeδ. Both these mutators resort to the minimum δ-mutator addδ

defined for GSetδ〈E〉, being themselves minimum. An element is considered to be in the set
if it only belongs to the first component.

This simple design allows adding and removing elements, but once an element has been
removed, adding it again is not possible (i.e., adding it does not alter the result of value

query function).

16 Chapter 2. synchronization of state-based crdts

TwoPSetδ〈E〉 = GSetδ〈E〉 × GSetδ〈E〉
⊥ = (⊥,⊥)

addδ(e, (a, r)) = (addδ(e, a),⊥)
removeδ(e, (a, r)) = (⊥, addδ(e, r))

value((a, r)) = a \ r

Figure 2.9.: Specification of TwoPSetδ〈E〉 on replica i

positive counter

A CRDT counter that only allows increments is known as grow-only counter or positive
counter (Figure 2.10), and can be constructed using another composition technique: map ↪→
[6].

A map K ↪→ V maps a set of keys K to a lattice V. The join of two maps m, m′ ∈ K ↪→ V
merges the lattice values associated to each key, and it is defined as:

m tm′ = {k 7→ m(k) tm′(k) | k ∈ dom(m) ∪ dom(m′)}

When a key k ∈ K does not belong to some map m ∈ K ↪→ V (i.e. k 6∈ dom(m)), m(k)
returns the bottom value ⊥ ∈ V; otherwise, it returns the value v ∈ V associated with k.

In the case of PCounterδ, the set of node identifiers I is mapped to the primitive lattice
MaxInt presented in Section 2.2. Increments are tracked per node, individually, and stored
in a map entry. The value of the counter is the sum of each entry’s value in the map.

PCounterδ = I ↪→ MaxInt

⊥ = {}
incδ

i (m) = {i 7→ m(i) + 1}
value(m) = ∑

j∈dom(m)

m(j)

Figure 2.10.: Specification of PCounterδ on replica i

positive-negative counter

In order to allow increments and decrements, we can store per node a pair of two
MaxInt: the first component tracks the number of increments, while the second, the number
of decrements. This data type is constructed resorting to the two composition techniques
described above.

2.4. Portfolio 17

PNCounterδ = I ↪→ (MaxInt×MaxInt)

⊥ = {}
incδ

i (m) = {i 7→ (fst(m(i)) + 1,⊥)}
decδ

i (m) = {i 7→ (⊥, snd(m(i)) + 1)}
value(m) = ∑

j∈dom(m)

fst(m(j))− snd(m(j))

Figure 2.11.: Specification of PNCounterδ on replica i

Both these counters suffer from the identity explosion problem, having a size linear with
the number of nodes that ever manipulated the counter, even when some leave the system.
A recent CRDT counter design, called borrow-counter [16], addresses this problem by distin-
guishing transient from permanent nodes and allowing transient nodes to increment the
counter as if the increments were performed by a permanent node.

add-wins set

The TwoPSetδ〈E〉 presented has a shortcoming: elements removed cannot be re-added.
To circumvent this limitation, some design choices have to be made in order to resolve
possible conflicting concurrent operations: operations that are not commutative in their
sequential form, e.g., adding and removing the same element from a set, conflict when they
occur concurrently. CRDTs solve this conflict deterministically by allowing the element
to be in the set (add-wins) or not to be in the set (remove-wins). An overview of these set
semantics can be found in [8].

The add-wins set AWSetδ〈E〉 belongs to a class of CRDTs called causal CRDTs [3]. Causal
CRDTs generalize techniques presented in [1, 9] for efficient use of meta-data state. The
lattice state of a causal CRDT is formed by a dot store and a causal context. A causal context
is a set of dots P(I×N), where the first component of dot I×N is a node identifier i ∈ I
and the second a local sequence number n ∈ N. Function nexti is used by replica i to
generate a new dot.

CausalContext = P(I×N)

maxi(c) = max({n | (i, n) ∈ c} ∪ {0})

nexti(c) = (i,maxi(c) + 1)

Three dot stores are introduced in [3]: DotSet, DotFun and DotMap. AWSetδ〈E〉 makes
use of two of them:

- DotSet : DotStore = P(I×N), a set of dots

18 Chapter 2. synchronization of state-based crdts

- DotMap〈K, V : DotStore〉 : DotStore = K ↪→ V, a map from a set of keys K to another
dot store V

The lattice join for causal CRDTs can be defined as:

Causal〈T : DotStore〉 = T × CausalContext

where T : DotSet

(s, c) t (s′, c′) = ((s ∩ s′) ∪ (s \ c′) ∪ (s′ \ c), c ∪ c′)

where T : DotMap〈 , 〉

(m, c) t (m′, c′) = ({k 7→ v(k) | k ∈ dom(m) ∪ dom(m′) ∧ v(k) 6= ⊥}, c ∪ c′)

where v(k) = fst((m(k), c) t (m′(k), c′))

The intuition here is: if a dot is not present in the dot store but is present in the causal
context, it means it was in the dot store before. So, when merging two replicas, a dot is
discarded if present in only one dot store and in the causal context of the other:

- ({A1}, {A1}) t ({}, {A1}) = ({}, {A1})
A1 is discarded since it was observed in both, and it is not present in the second dot
store

- ({A1}, {A1}) t ({B1}, {A1, B1}) = ({B1}, {A1, B1})
A1 is again discarded, but B1 survives because, although it is not present in the first
the dot store, it was not observed in its causal context

- ({A1, A2}, {A1, A2, B1}) t ({B1, B2}, {A1, B1, B2}) = ({A2, B2}, {A1, A2, B1, B2})
A1 and B1 are discarded, while A2 and B2 survive

- ({k 7→ {A1}}, {A1}) t ({k 7→ {B1}}, {A1, B1}) = ({k 7→ {B1}}, {A1, B1})
similar to the second example but the DotSet is associated with key k in the DotMap

- ({k 7→ {A1}}, {A1}) t ({}, {A1}) = ({}, {A1})
similar to the first example, but since the resulting DotSet is bottom, key k is removed
from the DotMap

An AWSetδ〈E〉 is a DotMap from the set of possible elements E to a DotSet (Figure 2.12).
When an element is added to a set, a new dot is created and that element is mapped

to a DotSet with only that dot. If the element was already in the set, the dots that were
supporting it are removed. To remove an element, we just remove its entry from the DotMap

(if concurrently this element is added to the set, the element will survive since a removal
only affects the set of dots observed locally). An element is considered to be in the set if it
has an entry in the map.

2.5. Summary 19

AWSetδ〈E〉 = Causal〈DotMap〈E,DotSet〉〉
⊥ = {}

addδ
i (e, (m, c)) = ({e 7→ {d}}, m(e) ∪ {d}) where d = nexti(c)

removeδ
i (e, (m, c)) = ({}, m(e))

value((m, c)) = dom(m)

Figure 2.12.: Specification of AWSetδ〈E〉 on replica i

2.5 summary

In this chapter we covered the state-based and delta-state-based algorithms, techniques cur-
rently used to synchronize state-based CRDTs. Although the delta-state-based algorithm ex-
ploits information nodes have about neighbors, non-naive algorithms to synchronize state-
based CRDTs when this information is not available are still missing. We introduce such
algorithms in the next chapter.

3

J O I N D E C O M P O S I T I O N S

As we saw in the previous chapter, delta-state-based CRDTs can greatly reduce the amount
of information exchanged among nodes during CRDT synchronization. For that, each node
should store additional metadata for keeping track of the updates seen by its neighbors in
the system (i.e. the nodes with which that node directly synchronizes its CRDT replicas).
This metadata is stored in a structure called δ-buffer. If nodes are operating over an unstable
network where links can fail, this metadata may have to be garbage collected to avoid
unbounded growth of the local δ-buffer. When links are restored, nodes can no longer
compute a δ-group based on their knowledge, and the full state has to be sent. This is also
a problem in highly dynamic overlays, where the set of neighbors is constantly changing.

∆-CRDTs [29] solve the problem of full state transmission by exchanging metadata used
to compute a ∆ that reflects the missing updates. In this approach CRDTs need to be
extended to maintain the additional metadata for ∆ derivation, and if this metadata needs
to be garbage collected, the mechanism falls-back to standard full state transmission.

In this chapter we propose an alternative solution that does not require extending cur-
rent state-based CRDT designs, but instead is able to decompose the local state into smaller
states that are selected and grouped in a ∆ for efficient transmission. Section 3.1 introduces
the concept of Join Decomposition of a state-based CRDT. Section 3.2 proposes two algo-
rithms, state-driven and digest-driven, that can be used to efficiently synchronize state-based
CRDTs when no metadata is available. Section 3.3 presents a portfolio of Join Decomposi-
tions for state-based CRDTs and Section 3.4 concludes the chapter.

21

22 Chapter 3. join decompositions

3.1 join decompositions of state-based crdts

Given a lattice state s ∈ S, D ∈ P(S) is an (irredundant) join decomposition [10] of s if the
join of all elements in the decomposition produces s (Property 3) and if each element in the
decomposition is not redundant (Property 4):

⊔
D = s (3)

∀d ∈ D·
⊔
(D \ {d}) < s (4)

Given s = {a, b, c}, and the following decomposition examples

3 D1 = {{a, b, c}}

7 D2 = {{b}, {c}}

7 D3 = {{a, b}, {b}, {c}}

3 D4 = {{a, b}, {c}}

3 D5 = {{a}, {b}, {c}}

D2 = {{b}, {c}} is not a join decomposition since the join of all its elements does not
produce s = {a, b, c}, i.e., Property 3 is not respected. D3 = {{a, b}, {b}, {c}} is not a join
decomposition because one of its elements, {b}, is redundant, and thus, it does not respect
Property 4.

3.1.1 Join-irreducible states

An element s ∈ S is said to be join-irreducible if it cannot result from the join of two
elements other that itself:

∀t, u ∈ S · s = t t u⇒ (t = s ∨ u = s)

3 s1 = {}

3 s2 = {a}

7 s3 = {a, b}

s2 = {a} is join-irreducible because when it is obtained by joining two elements in the
lattice, one of the elements is itself:

- s2 = {a} t {}

3.2. Efficient Synchronization of State-based CRDTs 23

- s2 = {} t {a}

- s2 = {a} t {a}

The same can’t be said about s3 = {a, b} since s3 = {a} t {b}.
Let J (S) ⊆ S be the subset of the lattice S containing all the join-irreducible elements

of S [11]. If all the elements in a join decomposition are join-irreducible, we have a join-
irreducible decomposition:

∀d ∈ D · d ∈ J (S) (5)

7 D1 = {{a, b, c}}

7 D2 = {{a, b}, {c}}

3 D3 = {{a}, {b}, {c}}

In this context D1 = {{a, b, c}} and D2 = {{a, b}, {c}} are not join-irreducible decom-
positions since both have elements that are not join-irreducible, which violates Property
5.

Given a state-based CRDT S, its join-irreducible decomposition is given by function
D : S→ P(S) [17]. Such function for a GSet〈E〉 can be defined as:

D(s) = {{e} | e ∈ s}

3.2 efficient synchronization of state-based crdts

Consider two nodes, node A with a ∈ S, and node B with b ∈ S, connected in a line topology,
such that A → B (Appendix A). At some point the link between the nodes fails, but both
keep updating the local state. When the link is restored, what should node A send to node
B so that node B observes the updates done on A since they stopped communicating? We
could try to find a ∆ such that:

a = b t ∆

However, if both nodes performed updates while they were offline, in general their local
states are concurrent (states s, t ∈ S are said to be concurrent if s 6v t ∧ t 6v s) and such ∆
does not exist. The trick is how to find a ∆ which reflects the updates done in the join of a
and b, still missing in b such that:

a t b = b t ∆

24 Chapter 3. join decompositions

In Algorithm 2 that presents the classic delta-state-based synchronization algorithm, ∆ =

a (line 25). The goal is to design a protocol that reduces the state transmitted between the
two nodes and results in node B having the missed updates done on node A while they
were unable to communicate. This section presents two such algorithms: state-driven in
Subsection 3.2.1 where node B sends its state b to node A and A computes ∆; and digest-
driven in Subsection 3.2.2 where B sends some information about its state b, smaller that b,
but enough for A to derive ∆.

3.2.1 State-driven Synchronization

The state-driven approach can be used to synchronize any state-based CRDT as long as we
have its join decomposition. ∆ is given by function min∆ : S× S→ S that takes as argument
the local state s and the remote state t:

min∆((s, t)) =
⊔
{d ∈ D(s) | t < t t d}

The ∆ that results from this function is the join of all states in the join decomposition of
the local state s that will strictly inflate the remote state t: a state s ∈ S is a strict-inflation
of t, i.e., t < s, if t v s ∧ t 6= s. In Section 3.3, when presenting the Join Decompositions
portfolio, we will show how to do this inflation checking efficiently for join-irreducible
decompositions.

Algorithm 3 presents the state-driven synchronization for state-based CRDTs. When a
node i ∈ I with local state Xi receives a remote state t from j ∈ I (line 5), it will compute
∆ = min∆((Xi, t)), send this ∆ to node j, and merge the received state with its local state.
When a node receives ∆ (line 9) it simply merges this ∆ with the local state.

Periodically, node i ∈ I sends its local state Xi to neighbor j ∈ ni, if i > j (line 15).

1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state, X0

i = ⊥
5 on receivej,i(state, t)
6 ∆i = min∆((Xi, t))
7 sendi,j(delta, ∆i)

8 X′i = Xi t t

9 on receivej,i(delta, ∆j)
10 X′i = Xi t ∆j

11 on operationi(m)
12 X′i = m(Xi)
13 periodically // ship state
14 for j ∈ ni
15 if i > j
16 sendi,j(state, Xi)

Algorithm 3: State-driven synchronization algorithm on replica i

The condition i > j is used to decide which of the two nodes should start the state-driven
algorithm, since, if both nodes have the initiative, this algorithm will be more bandwidth-

3.2. Efficient Synchronization of State-based CRDTs 25

heavy than the simple state-based approach (Algorithm 1). Condition i > j can be replaced
by any predicate P : I× I→ B such that:

∀i, j ∈ I · P(i, j)⇒ ¬P(j, i)

A relation defined using this predicate as its characteristic function is asymmetric.

In Figure 3.1 we have two nodes, A and B, connected in a line topology, synchronizing a
GSet〈E〉. Both start from the same state {a, b}, node A adds x and y to the set, and node B
adds z. In •, the state-driven synchronization algorithm starts with B sending its full state
to A, and node A replies with a ∆.

A {a, b}
add x,y// {a, b, x, y} {a, b, x, y, z}

∆

&&
B {a, b} add z // {a, b, z} •

{a,b,z}

==

{a, b, x, y, z}

Figure 3.1.: State-driven synchronization of a GSet〈E〉 with two nodes connected in a line topology

The trivial join decomposition for any state s ∈ S that does not respect Property 5 is
{s}, and if the received state is concurrent or less than the local state, we will have full
state transmission: ∆ would be {a, b, x, y} in Figure 3.1. However, with a join-irreducible
decomposition, we can reduce ∆ to {x, y}. Without expanding t = {a, b, z}:

min∆(({a, b, x, y}, t)) =
⊔
{d ∈ D({a, b, x, y}) | t < t t d} (def. min∆)

=
⊔
{d ∈ {{a}, {b}, {x}, {y}} | t < t t d} (def. D)

=
⊔
{{x}, {y}} (def. t, def. <)

= {x, y} (def.
⊔
)

3.2.2 Digest-driven Synchronization

In the digest-driven approach, the node that initiates the synchronization procedure, instead
of sending its full state as in state-driven, only sends a digest r ∈ R about its state s ∈ S that
still allows the receiving node to compute a ∆. An immediate consequence is the increased
number of messages that have to be exchanged to achieve convergence between the two
nodes (Figure 3.2).

26 Chapter 3. join decompositions

A {a, b}
add x,y// {a, b, x, y} {a, b, x, y}

rA,∆B

%%

{a, b, x, y, z}

B {a, b} add z // {a, b, z} •
rB

>>

{a, b, x, y, z}
∆A

88

Figure 3.2.: Digest-driven synchronization of a GSet〈E〉 with two nodes connected in a line topology

∆ is given by function min∆ : S×R → S that takes as argument the local state s and the
received digest r:

min∆((s, r)) =
⊔
{d ∈ D(s) | inf((d, r))}

The resulting ∆ will be the join of all states in the join-irreducible decomposition of the
local state that will strictly inflate the remote state: this decision is based on the received
digest which is data type specific, and thus a data type specific inflation checking function
inf : S ×R → B is needed. Also, for each state-based CRDT that supports digest-driven
synchronization, a digest extraction function digest : S→ R has to be defined.

Figure 3.3 shows two possible functions for digest extraction and inflation checking for
GSet〈E〉. Both functions rely on a third function f that should produce an unique identifier
for each element of the set, i.e., function f should be injective.

digest(s) = {f(e) | e ∈ s }
inf((e, r)) = f(e) 6∈ r

Figure 3.3.: digest and inf functions for GSet〈E〉

This function f has to be carefully crafted. First, it should further reduce (if possible) the
amount of information exchanged between nodes to achieve convergence, when compared
to the state-driven synchronization. Moreover, the use of non-injective functions, e.g., hash
functions that are not perfect [28], doesn’t guarantee convergence. In order to illustrate this
problem let E = {a, b, x, y, z}, R = P(N), and f : E→ N such that:

f(a) = 1

f(b) = 2

f(x) = 2

f(y) = 3

f(z) = 4

3.3. Portfolio 27

The same example of Figure 3.2 using function f is depicted in Figure 3.4.

A {a, b}
add x,y// {a, b, x, y} {a, b, x, y}

{1,2,3},{y}

%%

{a, b, x, y, z}

B {a, b} add z // {a, b, z} •
{1,2,4}

>>

{a, b, y, z}
{z}

99

Figure 3.4.: Digest-driven synchronization of a GSet〈E〉 with two nodes connected in a line topology
using a non-injective digest function

We can see that both nodes do not converge to the same state. When node B sends
rB = {1, 2, 4} as digest, it is implying that it has all the elements e ∈ E such that f(e) ∈ rB,
i.e., {a, b, x, z}, while in fact it only has {a, b, z}.

Figure 3.4 also hints on another technique that could be designed: the node that computes
the first ∆, instead of sending the digest of what it has locally, can instead reply with the
digest of what it doesn’t have, since it has the digest of the other node.

Algorithm 4 unifies the state-driven and digest-driven algorithms. It assumes digest is
defined for any CRDT (line 24): if the data type supports digest-driven, it returns the digest,
otherwise the CRDT state is returned. When a node receives this digest, it checks (line
7) whether it is receiving a CRDT state (state-driven algorithm) or a digest (digest-driven
algorithm). In the first case, the algorithm will proceed as described in Algorithm 3 by
sending a ∆ to the remote node (line 8) and merging the received remote state into the
local state (line 9). In the second case, the node will send not only this ∆, but also a digest
of its local state (line 12). When receiving a digest and a ∆ (line 15), the node computes
another ∆ given the received digest, sends it, finally merging the received ∆ with its local
state.

3.3 portfolio

In this section we will present a portfolio with join decomposition, digest and inflation
check functions of the data types presented in Chapter 2. All join decomposition functions
produce irreducible decompositions, digest functions are defined even if the data type does
not support digest-driven synchronization, and inflation checks of join-irreducible states are
performed in an efficient way.

grow-only set

Figure 3.5 defines the join-decomposition function (as seen in Section 3.1) for GSet〈E〉,

28 Chapter 3. join decompositions

1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state, X0

i = ⊥
5 on receivej,i(digest, r)
6 ∆i = min∆((Xi, r))
7 if r ∈ S
8 sendi,j(delta, ∆i)

9 X′i = Xi t r
10 else
11 q = digest(Xi)
12 sendi,j(digest, q, ∆i)

13 on receivej,i(delta, ∆j)
14 X′i = Xi t ∆j

15 on receivej,i(digest, r, ∆j)
16 ∆i = min∆((Xi, r))
17 sendi,j(delta, ∆i)

18 X′i = Xi t ∆j

19 on operationi(m)
20 X′i = m(Xi)
21 periodically // ship state or digest
22 for j ∈ ni
23 if P(i, j)
24 r = digest(Xi)
25 sendi,j(digest, r)

Algorithm 4: State-driven and Digest-driven synchronization algorithms on replica i

a digest function that simply returns the lattice state, and an inflation check function for
join-irreducible states.

GSet〈E〉 = P(E)
D(s) = {{e} | e ∈ s}

digest(s) = s
inf(({e}, s)) = e 6∈ s

Figure 3.5.: Specification of join-decomposition, digest, and inflation check functions for GSet〈E〉

Deciding if merging a lattice state d ∈ S with another lattice state s ∈ S will result in an
strict inflation can be trivially done by checking if:

s < s t d

However, if d ∈ J (S), i.e., if d is a join-irreducible state, this checking can be done more
efficiently. For a GSet〈E〉, we can simply check if the element in the join-irreducible state is
already in the set: if it is not in the set, then merging it with the set will result in a strict
inflation:

s < s t {e} ⇔ e 6∈ s

two-phase set

The join-irreducible decomposition of TwoPSet〈E〉 is presented in Figure 3.6. Each ele-

3.3. Portfolio 29

ment in the decomposition is irreducible since one component has a singleton set and the
other is bottom.

TwoPSet〈E〉 = GSet〈E〉 × GSet〈E〉
D((a, r)) = {({e},⊥) | e ∈ a} ∪ {(⊥, {e}) | e ∈ r}

digest((a, r)) = (a, r)

inf((d, (a, r))) =

{
e 6∈ a if d = ({e},⊥)
e 6∈ r if d = (⊥, {e})

Figure 3.6.: Specification of join-decomposition, digest, and inflation check functions for TwoPSet〈E〉

Given

- s = ({a, b}, {a}) as local state and

- t = ({a, c}, {}) as remote state:

min∆((s, t)) =
⊔
{d ∈ D(s) | inf((d, t))} (def. min∆)

=
⊔
{d ∈ {({a},⊥), ({b},⊥), (⊥, {a})} | inf((d, t))} (def. D)

=
⊔
{({b},⊥), (⊥, {a})} (def. inf)

= ({b}, {a}) (def.
⊔
)

positive counter

The join-irreducible decomposition of PCounter is defined in Figure 3.7. Each element
in the decomposition is irreducible since it is a single map entry, and the values in each
entry form a total order. Checking if an irreducible state inflates some lattice state can be
done by simply testing if the entry’s value in the lattice state is lower than the value in the
irreducible state.

PCounter = I ↪→ MaxInt

D(m) = {{i 7→ p} | (i, p) ∈ m}
digest(m) = m

inf(({i 7→ p}, m)) = m(i) < p

Figure 3.7.: Specification of join-decomposition, digest, and inflation check functions for PCounter

Given

- s = {A 7→ 2, B 7→ 1, C 7→ 17} as local state and

- t = {A 7→ 2, C 7→ 12} as remote state:

30 Chapter 3. join decompositions

min∆((s, t)) =
⊔
{d ∈ D(s) | inf((d, t))} (def. min∆)

=
⊔
{d ∈ {{A 7→ 2}, {B 7→ 1}, {C 7→ 17}} | inf((d, t))} (def. D)

=
⊔
{{B 7→ 1}, {C 7→ 17}} (def. inf)

= {B 7→ 1, C 7→ 17} (def.
⊔
)

positive-negative counter

Figure 3.8 defines the join decomposition function of PNCounter. Each element in the
decomposition is irreducible since it is a single map entry, and the values in each entry are
irreducible as well.

PNCounter = I ↪→ (MaxInt×MaxInt)

D(m) = {{i 7→ (p,⊥)}, {i 7→ (⊥, n)} | (i, (p, n)) ∈ m}
digest(m) = m

inf((d, m)) =

{
fst(m(i)) < p if d = {i 7→ (p,⊥)}
snd(m(i)) < n if d = {i 7→ (⊥, n)}

Figure 3.8.: Specification of join-decomposition, digest, and inflation check functions for PNCounter

Given

- s = {A 7→ (10, 5)} as local state and

- t = {A 7→ (3, 7)} as remote state:

min∆((s, t)) =
⊔
{d ∈ D(s) | inf((d, t))} (def. min∆)

=
⊔
{d ∈ {{A 7→ (10,⊥)}, {A 7→ (⊥, 5)}} | inf((d, t))} (def. D)

=
⊔
{{A 7→ (10,⊥)}} (def. inf)

= {A 7→ (10,⊥)} (def.
⊔
)

add-wins set

Join Decomposition function of AWSet〈E〉 is defined in Figure 3.9, along with its digest,
and inflation check function. Each element in the join decomposition either represents
an addition ({e 7→ {d}}, {d}) or a removal ({}, {d}) of an element. The digest function
produces a pair with the set of active dots (dots in the dot store supporting the elements in
the set) in the first component and the causal context in the second. A join-irreducible state

3.4. Summary 31

will strictly inflate an AWSet〈E〉 if it has a dot not observed in the causal context (d 6∈ c) or
if it represents a removal and the dot is still active (m = {} ∧ d ∈ a).

AWSet〈E〉 = Causal〈DotMap〈E,DotSet〉〉
D((m, c)) = {({e 7→ {d}}, {d}) | (e, s) ∈ m ∧ d ∈ s}

∪ {({}, {d}) | d ∈ c \
⋃

range(m)}

digest((m, c)) = (
⋃

range(m), c)

inf(((m, {d}), (a, c))) = d 6∈ c ∨ (m = {} ∧ d ∈ a)

Figure 3.9.: Specification of join-decomposition, digest, and inflation check functions for AWSet〈E〉

Given

- s = ({x 7→ {A1}}, {A1, B1, B2}) as local state,

- t = ({x 7→ {A1}, y 7→ {B2}}, {A1, B1, B2}) as remote state and

- r = digest(t) = ({A1, B2}, {A1, B1, B2}) as the digest of remote state t:

min∆((s, r)) =
⊔
{d ∈ D(s) | inf((d, r))} (def. min∆)

=
⊔
{d ∈ {({x 7→ {A1}}, {A1}), ({}, {B1}), ({}, {B2})} | inf((d, r))} (def. D)

=
⊔
{({}, {B2})} (def. inf)

= ({}, {B2}) (def.
⊔
)

3.4 summary

In this chapter we introduced the concept of Join Decomposition of a state-based CRDT
and showed how it can be used to efficiently synchronize state-based CRDTs in two novel
algorithms: state-driven and digest-driven. In the next chapter we integrate these two algo-
rithms in the delta-state-based synchronization algorithm, and propose some modifications
that further lower the amount of data transmitted during synchronization.

4

D E LTA - S TAT E - B A S E D S Y N C H R O N I Z AT I O N A L G O R I T H M
R E V I S I T E D

Chapter 2 presented some enhancements that can reduce the amount of state transmission
required by the delta-state-based synchronization algorithm. These enhancements fall into
two categories: sender-based-knowledge and receiver-based-knowledge. The classic delta-state-
based algorithm mainly exploits sender-based-knowledge by only sending to a neighbor the
δ-groups in its δ-buffer unacknowledged by that neighbor. In Section 4.1 we further improve
on this by also avoiding to send the implicitly acknowledged δ-groups.

The original algorithm didn’t employ any receiver-based-knowledge strategy: when a node
received a δ-group, it would add it to the δ-buffer, to be further propagated to its neighbors.
In this situation, one single update would lead to an infinite cycle of sending, back and
forth, that δ-group. The classic algorithm [2, 3] (Algorithm 2) solves this by only adding to
the δ-buffer the δ-groups that strictly inflate the local state. In Section 4.2 we explain why
this is still not enough, and present an alternative optimal solution.

There is a third category of optimizations, when nodes have no knowledge about the
neighbor they will synchronize with. This situation occurs when peers get partitioned
by the network and nodes need to forget their knowledge about those peers to avoid un-
bounded growth of the δ-buffer, or when synchronizing with a new peer due to member-
ship changes. The delta-state-based algorithm contemplates this situation, but full state is
exchanged. In Chapter 3 we addressed this problem with the state-driven and digest-driven
algorithms. Section 4.3 integrates these algorithms in revisited delta-state-based synchro-
nization algorithm, avoiding bidirectional full state transmission. Finally, Section 4.4 con-
cludes this chapter.

4.1 avoiding back-propagation of δ-groups

If node A sends a δ-group d to node B, when B decides to synchronize with its neighbors,
it should filter out this d when computing the δ-group to be sent to node A. This can be
achieved by tagging each δ-group in the δ-buffer B with the origin node identifier. Previ-
ously, the δ-buffer B was a map with sequence numbers c ∈ N as keys and lattice states

33

34 Chapter 4. delta-state-based synchronization algorithm revisited

d ∈ S as values. In Algorithm 5, the δ-buffer B is modified in order to keep track of each
value’s origin in the buffer: keys c ∈ N are now mapped to pairs with a lattice state in the
first component and node identifier (origin) j ∈ I in the second (line 8). When receiving a
δ-group from some node j ∈ I, we add to the buffer B a pair formed by the non-redundant
state ∆ (this optimization is explained in the next section) and the node identifier j (line
13). As before, when propagating changes to neighbors, a node first checks if it has enough
information to compute a δ-group: if the δ-buffer is empty and the neighbor is missing in-
formation (Bi = {} ∧ Ai(j) < ci), or the entries in the δ-buffer are in the future of what the
node knows about the neighbor (min(dom(Bi)) > Ai(j)), hence full state has to be sent (line
25) (this is addressed in Section 4. 3). When the node has enough information, only the
unacknowledged entries (Ai(j) ≤ l < ci) that are not tagged with this neighbor identifier
(snd(Bi(l)) 6= j) are sent (line 28).

1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state, X0

i = ⊥
5 ci ∈ N, sequence number, c0

i = 0
6 volatile state:
7 Ai ∈ I ↪→ N, ack map, A0

i = {}
8 Bi ∈ N ↪→ (S× I), buffer, B0

i = {}
9 on receivej,i(delta, d, n)

10 ∆ = min∆((d, Xi))
11 if ⊥ < ∆
12 X′i = Xi t ∆
13 B′i = Bi{ci 7→ (∆, j)}
14 c′i = ci + 1
15 sendi,j(ack, n)
16 on receivej,i(ack, n)
17 A′i = Ai{j 7→ max(Ai(j), n)}

18 on operationi(m
δ)

19 d = mδ(Xi)
20 X′i = Xi t d
21 B′i = Bi{ci 7→ (d, i)}
22 c′i = ci + 1
23 periodically // ship interval or state
24 for j ∈ ni
25 if (Bi = {} ∧ Ai(j) < ci) ∨

min(dom(Bi)) > Ai(j)
26 sendi,j(delta, Xi, ci)

27 else
28 d =

⊔{fst(Bi(l)) | Ai(j) ≤ l < ci
∧ snd(Bi(l)) 6= j}

29 if ⊥ < d
30 sendi,j(delta, d, ci)

31 periodically // garbage collect deltas
32 l = min{n | (, n) ∈ Ai}
33 B′i = {(n, ,) ∈ Bi | n ≥ l}

Algorithm 5: Delta-state-based synchronization algorithm avoiding back-propagation of
δ-groups and removing redundant state present in the received δ-groups on replica i

4.2 removing redundant state in δ-groups

A received δ-group can contain redundant state, i.e., state that has already been propagated
to neighbors, or state that is in the δ-buffer B, still to be propagated. This occurs in topolo-
gies where the underlying graph is cyclic: nodes can receive the same information from
different paths in the graph. In order to detect if a δ-group has redundant state, nodes

4.3. Synchronizing with a new neighbor 35

do not need to keep everything in the δ-buffer or even inspect the δ-buffer: it is enough
to compare the received δ-group with the local lattice state Xi. In Algorithm 2, received
δ-groups were added to δ-buffer only if they would strictly inflate the local state. In the
modified Algorithm 5, we extract from the δ-group what strictly inflates the local state Xi

(line 10), and if that is different from bottom (line 11), then we merge it with Xi and add it
to the buffer (line 13).

This extraction is achieved with the same technique used in the state-driven algorithm,
described in Chapter 3. However, instead of selecting which irreducible states from the join
decomposition of the local state strictly inflate the received remote state, we select which
irreducible states from the join decomposition of the received δ-group strictly inflate the
local state.

With this technique, the following property always holds for a given δ-buffer B (if δ-
mutators are minimum):

⋂
{D(b) | b ∈ B} = {}

An algorithm, in which δ-buffers respect this property, is receiver-based bandwidth-optimal.
Further improvements are possible for sender-based but require an underlying structured
overlay, e.g., a Plumtree [21].

4.3 synchronizing with a new neighbor

Algorithm 6 combines state-driven and digest-driven algorithms presented in Algorithm 4

with the delta-state-based Algorithm 5 presented previously in this chapter.

If a node has no information about the neighbor it wants to synchronize with, instead of
sending its full state, it starts the state-driven or digest-driven algorithm (line 40), depending
which algorithm the data type supports (or some configuration, given that state-driven is
always possible, as long as the join decomposition is defined for that data type).

As in Algorithm 4, when receiving this message, the node checks if it is receiving a
lattice state or a digest (line 20), to ensure that the correct technique is employed. In the
case of state-driven, instead of directly merging the received state with the local state, a
node triggers the receipt of a delta (line 22), adding the received information (what strictly
inflates) to the δ-buffer and merging that information with the local state. This trigger also
occurs when receiving the second message of the digest-driven algorithm (line 29).

36 Chapter 4. delta-state-based synchronization algorithm revisited

1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state, X0

i = ⊥
5 ci ∈ N, sequence number, c0

i = 0
6 volatile state:
7 Ai ∈ I ↪→ N, ack map, A0

i = {}
8 Bi ∈ N ↪→ (S× I), buffer, B0

i = {}
9 on receivej,i(delta, d, n)

10 ∆ = min∆((d, Xi))
11 if ⊥ < ∆
12 X′i = Xi t ∆
13 B′i = Bi{ci 7→ (∆, j)}
14 c′i = ci + 1
15 sendi,j(ack, n)
16 on receivej,i(ack, n)
17 A′i = Ai{j 7→ max(Ai(j), n)}
18 on receivej,i(digest, r, n)
19 ∆i = min∆((Xi, r))
20 if r ∈ S
21 sendi,j(delta, ∆i, ci)

22 receivej,i(delta, r, n)
23 else
24 q = digest(Xi)
25 sendi,j(digest, q, ∆i, ci)

26 on receivej,i(digest, r, ∆j, n)
27 ∆i = min∆((Xi, r))
28 sendi,j(delta, ∆i, ci)

29 receivej,i(delta, ∆j, n)
30 on operationi(m

δ)
31 d = mδ(Xi)
32 X′i = Xi t d
33 B′i = Bi{ci 7→ (d, i)}
34 c′i = ci + 1
35 periodically // ship interval, state or digest
36 for j ∈ ni
37 if (Bi = {} ∧ Ai(j) < ci) ∨

min(dom(Bi)) > Ai(j)
38 if P(i, j)
39 r = digest(Xi)
40 sendi,j(digest, r, ci)

41 else
42 d =

⊔{fst(Bi(l)) | Ai(j) ≤ l < ci
∧ snd(Bi(l)) 6= j}

43 if ⊥ < d
44 sendi,j(delta, d, ci)

45 periodically // garbage collect deltas
46 l = min{n | (, n) ∈ Ai}
47 B′i = {(n, ,) ∈ Bi | n ≥ l}

Algorithm 6: Delta-state-based synchronization algorithm avoiding back-propagation of
δ-groups, removing redundant state present in the received δ-groups, and resorting to
State-driven and Digest-driven synchronization algorithms when synchronizing with new
neighbors on replica i

4.4 summary

In this chapter we revisited the delta-state-based algorithm and proposed modifications
that improve the state transmission, as we will show in the next chapter when evaluating
the thesis contributions. We have also defined a sufficient condition for a receiver-based
bandwidth-optimal algorithm. Interestingly, the same technique used for ∆ derivation in
the state-driven and digest-driven algorithms can also be used to design such algorithm.

5

E VA L U AT I O N

In this chapter we evaluate the theoretical contributions presented in Chapters 3 and 4. For
that, we set out to answer the following questions:

- How does the state-driven and digest-driven algorithms compare to the state-based
algorithm?

- How does the classic delta-state-based algorithm compare to the state-based algo-
rithm?

- What’s the effect of avoiding back-propagation of δ-groups and removing redundant state
in δ-groups in the delta-state-based algorithm?

- What’s the impact of the data type and the underlying topology in the proposed
modifications?

- If a network partition occurs and nodes are forced to forget what they know about
neighbors, how does the state-driven and digest-driven algorithms compare to bidirec-
tional full-state transmission in the delta-state-based algorithm?

To this end, we have implemented a set of libraries that are presented in 5.1, along with
the experimental setup used for the evaluation. In Section 5.2 we show the evaluation
results, and this chapter is concluded in Section 5.3.

5.1 experimental setup

In order to evaluate the proposed solutions, we have implemented several libraries.

types

This library [20] of state-based CRDTs1 implements several data types [3, 5, 6, 27]:

1 types is also a library of pure-op based CRDTs [7]

37

38 Chapter 5. evaluation

- Boolean, MaxInt

- DWFlag, EWFlag

- LWWRegister, MVRegister

- PCounter, PNCounter, LexCounter, BoundedCounter

- GSet, TwoPSet, ORSet, AWSet

- Pair, GMap, AWMap

These data types are all equipped with δ-mutators (and mutators defined through these
δ-mutators), a binary join, inflation and strict inflation check, and query functions. Some
data types also define join decomposition, digest and ∆ derivation functions.

partisan

This library [19] is a scalable peer service prototype designed for Lasp [24]. It provides
three different backends:

- Default (full membership): ∀i ∈ I · ni = I \ {i}

- Client-Server (star topology): ni = I \ {i} if i is a server, and |ni| = 1 if i is a client (this
unique neighbor is a server)

- HyParView [22]: a protocol that maintains the invariant ∀i ∈ I · a ≤ |ni| ≤ b, where a
and b are the minimum and maximum size of the active view, respectively

We have extended partisan with a Static backend where connections are performed explic-
itly between nodes, giving us total control on the topology employed. This backend will be
used to run experiments on top of line and ring topologies.

ldb

This library [12] is a CRDT key-value store that leverages both types and partisan libraries
for the implementation of the state-based and delta-state-based synchronization backends2.

In both backends is possible to synchronize replicas using state-driven and digest-driven
algorithms (if that option is enabled by configuration). In the case of delta-state-based,
this synchronization only occurs if the node has no information about the neighbor, then
resuming to normal operation by sending δ-groups. The modifications proposed to the
delta-state-based algorithm in Chapter 4, avoiding back-propagation of δ-groups (BP) and re-
moving redundant state in δ-groups (RR), were also implemented, allowing us to measure

2 ldb also provides a pure-op based backend

5.1. Experimental Setup 39

their effect, when enabled. Synchronization with neighbors occurs periodically, given some
configurable interval.

If enabled, an ldb node will collect metrics regarding:

- size of messages sent

- latency creating messages to send

- latency processing messages received

lsim

This library [13] provides the necessary infrastructure to run ldb simulations on top of
Kubernetes3. It provides:

- a set of simulations where each event is a CRDT update, with configurable number
of events and its frequency:

– PCounter, where each event is an increment

– GSet, where each event is an addition of a globally unique element to the set

– AWSet, where 75% of events are additions and 25% are removals

- different topologies: line, ring and HyParView

- creation of network partitions using iptables4

- metrics archival in a Redis5 instance

- a special lsim node only responsible for orchestrating the experiments:

– when all nodes are running and connected to neighbors, instruct them to start
the simulation

– if enabled, start and end network partitions

– when all nodes announce the end of the simulation (finished generating events
and observed all the events from other nodes), instruct them to archive the met-
rics collected during the experiment

– when all nodes archived their metrics in Redis, shutdown nodes

By default, network partitions are disabled, and thus, the topology forms a single con-
nected component. If enabled, network partitions start and end when 50% and 75% of the

3 https://kubernetes.io/
4 https://help.ubuntu.com/community/IptablesHowTo
5 https://redis.io/

https://kubernetes.io/
https://help.ubuntu.com/community/IptablesHowTo
https://redis.io/

40 Chapter 5. evaluation

events were generated, respectively, with a configurable number of connected components
to be created. It is only possible to completely control the number of connected components
created if the topology being employed is Static.

In order to run lsim on Kubernetes, this application was containerized using Docker6.

lsim-dash

All the libraries mentioned so far were written in Erlang7. This library [14] was imple-
mented using Meteor8, a JavaScript9 framework. It periodically fetches information from:

- Kubernetes, to know which experiments are currently running, and information (e.g.
IP and web port) about the nodes in each experiment

- Running nodes, to know to which nodes they are connected to (each node exposes a
web API with membership information)

- Redis, to know which experiments have already ended

This dashboard (Figure 5.1) was specially useful when network partitions were enabled,
helping us understand the resulting topology.

Figure 5.1.: Dashboard

The experiments were run on Google Container Engine10, which uses Kubernetes for
container orchestration. The machine type used was n1-standard-1 (1 virtual CPU and 3.75

GB of RAM), with all machines allocated within the same availability zone. The Kubernetes
cluster size depended on the number of nodes of the experiment, but it was always set

6 https://www.docker.com/
7 http://www.erlang.org/
8 https://www.meteor.com/
9 https://www.javascript.com/

10 https://cloud.google.com/container-engine/

https://www.docker.com/
http://www.erlang.org/
https://www.meteor.com/
https://www.javascript.com/
https://cloud.google.com/container-engine/

5.2. Results 41

ensuring it was big enough so that two nodes (pods) were not scheduled on the same
virtual machine.

5.2 results

In this section we present the results of the evaluation. All experiments were run with 8

nodes, with the event generation interval and the synchronization interval set at 1 second.
In each simulation, the number of generated events per node was 100.

5.2.1 State-based, state-driven and digest-driven synchronization algorithms

First we compared the state-based algorithm with state-driven and digest-driven algorithms
on top of three different network topologies, line, ring and HyParView, and with three
different simulations GSet, PCounter and AWSet.

Figure 5.2.: Accumulated transmission of state-based, state-driven and digest-driven algorithms for
line, ring and HyParView topologies

Figure 5.2 shows the accumulated transmission for all the nine configurations. Over-
all, both state-driven and digest-driven synchronization algorithms reduce the amount of
information exchanged among nodes. In the case of PCounter, state-driven is only a small
improvement when comparing to state-driven since the CRDT state size (linear with the

42 Chapter 5. evaluation

number of nodes in the system) is constant throughout the simulation. In the case of
AWSet, the only simulation that supports digest-driven, we see that both algorithms reduce
information transmission by a considerable amount. However, from these results we can-
not say that, e.g., state-driven is two times better than state-based, since the absolute values
depend on the length of the run. For example, doubling the number of events per node
in the simulations would result in a bigger gap between the accumulated transmission of
state-based and the two other algorithms.

When comparing GSet and AWSet, one would expect the former to have a smaller accu-
mulated transmission since the data type does not require extra information for causality
tracking and conflict-resolution to be stored in the lattice state. In these results, this is
not observable and that comes from the fact that the AWSet simulation performs removals
throughout the experiment.

In terms of the topologies employed, we can see that the ones with higher number of
links (HyParView > ring > line) have higher total transmission, as expected.

Figure 5.3 shows the local latency (time it takes to create a message to send) and remote
latency (time it takes to process a message received) CDF, with logarithmic scale on the
Latency axis, for state-based, state-driven and digest-driven synchronization algorithms, with
the same three simulations on top of the HyParView topology.

Figure 5.3.: Local and remote latency CDF of state-based, state-driven and digest-driven algorithms
for HyParView topology

5.2. Results 43

Both state-driven and digest-driven incur a penalty in terms of computation required to
execute the algorithm. Locally, this penalty is more noticeable in the AWSet simulation
with digest-driven synchronization algorithm due to the computation required to compute
the digest of the lattice state. Remotely, the penalty results from the extra computation
needed to calculate the ∆. This penalty is fairly the same either using a lattice state or a
digest, in the case of AWSet.

For brevity, we only presented the results for the HyParView topology. However, the
conclusions presented here could have been established using the results of the two other
topologies.

5.2.2 Delta-state-based synchronization algorithm

With the first question answered in the previous subsection (How does the state-driven and
digest-driven algorithms compare to the state-based algorithm?), in this subsection we are
targeting the next three:

- How does the classic delta-state-based algorithm compare to the state-based algo-
rithm?

- What’s the effect of avoiding back-propagation of δ-groups (BP) and removing redundant
state in δ-groups (RR) in the delta-state-based algorithm?

- What’s the impact of the data type and the underlying topology in the proposed
modifications?

The experiments were run on top of line, ring and HyParView topologies, with GSet,
PCounter and AWSet simulations, and with state-based and delta-state-based synchroniza-
tion algorithms, enabling/disabling the optimizations presented in the previous chapter. In
total, we have 5 different possible configurations:

- State-based

- Delta-state-based

- Delta-state-based avoiding back-propagation of δ-groups (BP)

- Delta-state-based removing redundant state in δ-groups (RR)

- Delta-state-based BP+ RR

Figure 5.4 shows the accumulated transmission for this set of experiments. We can ob-
serve that the classic delta-state-based synchronization algorithm has almost the same total
amount of transmission exchanged among nodes as the state-based algorithm.

44 Chapter 5. evaluation

Figure 5.4.: Accumulated transmission of state-based, delta-based, delta-based BP, delta-based RR
and delta-based BP+ RR algorithms for line, ring and HyParView topologies

Employing our proposed modifications (BP and RR) greatly reduces the amount of infor-
mation exchanged. The BP optimization is enough for acyclic topologies (see for example
GSet - Line).

When the topology is cyclic, as is the case of ring and HyParView, it is necessary to
discard redundant information that may be received by some node from different paths in
the topology. This can be done with the RR optimization. The more cycles the topology
has, the more relevant this optimization is, when comparing to the BP optimization (see for
example GSet - Ring vs GSet - HyParView).

Once again, the constant size of the CRDT state in the PCounter simulation makes these
optimizations less relevant.

Figure 5.5 shows the local and remote latency CDF, with logarithmic scale on the Latency
axis, for the same set of 5 possible configurations on top of the HyParView topology.

Locally it’s not easy to do better than state-based since there’s no computation performed
on this algorithm when a message is sent. In the case of delta-state-based, in all the config-
urations, it is necessary to compute the δ-group to be sent to each neighbor. This implies
selecting which of entries of the δ-buffer haven’t been effectively received by a neighbor, and
in the end merge all these entries to compute the δ-group. Both BP and RR optimizations
imply less or smaller entries to be merged, respectively, and thus these variants perform

5.2. Results 45

Figure 5.5.: Local and remote latency CDF of state-based, delta-based, delta-based BP, delta-based
RR and delta-based BP+ RR algorithms for HyParView topology

better locally than the classic delta-state-based algorithm: the BP optimization performs
slightly better, while RR greatly reduces the computation time required.

Remotely, in the case of the state-based, the only computation required is to merge the
received lattice state with the local state. In the case of delta-state-based and delta-state-
based BP, first both check if the received δ-group will provoque a strict-inflation in the
local state, and if it will, this δ-group is merged with the local state and added to the δ-
buffer. As we can see in Figure 5.5, these two variants have equivalent performance and
that comes from the fact that the amount of state transmitted (which is what has an impact
on inflation-checking and merging computation time) in the HyParView topology is the
same (as we can observe in Figure 5.4). And since the amount of state transmitted of these
two variants is similar to state-based, these variants actually perform worse than state-based
(since state-based only has to merge, while these variants have to check for strict-inflation
before merging).

One consequence of sending less state, is that merging is also less expensive. The RR

optimization is not only better that delta-state-based and delta-state-based BP, but also
better than state-based.

46 Chapter 5. evaluation

5.2.3 Delta-state-based with state-driven and digest-driven synchronization algorithms

At this point, there’s only question left to be answered:

- If a network partition occurs and nodes are forced to forget what they know about
neighbors, how does the state-driven and digest-driven algorithms compare to bidirec-
tional full-state transmission in the delta-state-based algorithm?

In order to answer this question, we designed a controlled experiment where we induce
network partitions in the middle of the execution (when 50% of the events were generated).
We have total control on the resulting overlay, since the experiment was run using a Static
topology, namely a ring topology. As the other experiments, this one was run with 8 nodes
and the partitions were induced in order to create either 2 connected components (each
component with 4 nodes) or 4 connected components (each component with 2 nodes), as
shown in Figure 5.6. When 75% of the events were generated, partitions were healed, and
again a single connected components was created, in the form of a ring.

Figure 5.6.: Accumulated transmission of delta-based BP+ RR, delta-based BP+ RR with state-
driven and delta-based BP+ RR with digest-driven algorithms for ring topology with
induced partitions

When partitions heal, nodes from different partitions need to synchronize, and this syn-
chronization was performed in three different ways:

- bidirectional full state transmission (as in the classic delta-state-based algorithm)

5.3. Summary 47

- state-driven synchronization algorithm

- digest-driven synchronization algorithm

In Figure 5.6 we observe that these novel synchronization algorithms are very effective,
and don’t incur a noticeable penalty in terms of computation time, as shown in Figure 5.7.

To be noted that this experiment was performed with the optimization RR in the delta-
state-based algorithm, and that benefits the first two synchronization strategies, but mostly
the first (bidirectional full state transmission), in the long run. In the classic delta-state-
based algorithm, full state transmission as a synchronization mechanism means that the
whole state would be added to the δ-buffer to be further propagated. This would result in
an increased total transmission.

Figure 5.7.: Local and remote latency CDF of algorithms delta-based BP+ RR, delta-based BP+ RR
with state-driven and delta-based BP+ RR with digest-driven for ring topology with in-
duced partitions

5.3 summary

In this chapter we have introduced the set of libraries implemented in order to validate our
theoretical contributions. With these libraries we have designed a set of experiments that
show the benefits of integrating in the classic delta-state-based algorithm the novel algo-

48 Chapter 5. evaluation

rithms presented in Chapter 3 and the effect of the optimizations avoiding back-propagation
of δ-groups and removing redundant state in δ-groups presented in Chapter 4.

6

C O N C L U S I O N

In this thesis we revisited the delta-state-based algorithm and defined three categories of
optimizations in terms of state transmission: sender-based-knowledge, receiver-based-knowledge
and lack-of-knowledge.

In the first, sender-based-knowledge, a node exploits the knowledge it has about its neigh-
bors in order to not send information that it has been acknowledged (explictly and im-
pliclty) by a neighbor. In this category, we have presented an optimization, avoiding back-
propagation of δ-groups, that avoids to send implictly acknowledged entries in the δ-buffer,
i.e., entries that were received from that neighbor.

The second category, receiver-based-knowledge, includes actions performed by a node when
it receives a δ-group from a neighbor, and it was practically not addressed by previous ver-
sions of the delta-state-based algorithm. We have introduced an optimization, removing
redundant state in δ-groups, that ensures optimal additions to the δ-group, i.e., a node only
adds to the buffer new information, and thus it avoids sending repeated information to
neighbors. This optimization was proved to be very effective during the evaluations per-
formed.

The third category of optimizations, lack-of-knowledge, includes worst case scenario situ-
ations where nodes don’t have any knowledge about the neighbor they will synchronize
with. In this category, we have presented two novel algorithms, state-driven synchronization
algorithm and digest-driven synchronization algorithm, and integrated them in the delta-
state-based algorithm.

The optimizations presented in the last two categories are possible due to the concept of
join decompositions of state-based CRDTs introduced in Chapter 3.

As future work, we intend to explore a bandwith-optimal solution for the sender-based-
knowledge category, as we did for the receiver-based-knowledge category. The classic delta-
state-based synchronization algorithm has been shown to respect per-object causal consis-
tency, and we plan to do the same for state-driven and digest-driven algorithms, and for their
inclusion in the delta-state-based algorithm as a lack-of-knowledge synchronization mecha-
nism.

49

B I B L I O G R A P H Y

[1] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno M. Preguiça, and Vic-
tor Fonte. Scalable and Accurate Causality Tracking for Eventually Consistent Stores.
In Distributed Applications and Interoperable Systems, 2014.

[2] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient State-Based CRDTs
by Delta-Mutation. In Networked Systems - Third International Conference, NETYS 2015,
Agadir, Morocco, May 13-15, 2015, Revised Selected Papers, pages 62–76, 2015.

[3] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta State Replicated Data
Types. CoRR, abs/1603.01529, 2016.

[4] Peter Bailis and Kyle Kingsbury. The network is reliable. Commun. ACM, 57(9):48–55,
2014.

[5] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Rodrigo Ro-
drigues, and Nuno M. Preguiça. Extending Eventually Consistent Cloud Databases for
Enforcing Numeric Invariants. In 34th IEEE Symposium on Reliable Distributed Systems,
2015.

[6] Carlos Baquero, Paulo Sérgio Almeida, Alcino Cunha, and Carla Ferreira. Composition
of State-based CRDTs. Technical report, 2015.

[7] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making Operation-Based
CRDTs Operation-Based. In Distributed Applications and Interoperable Systems - 14th IFIP
WG 6.1 International Conference, DAIS 2014, Held as Part of the 9th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5,
2014, Proceedings, pages 126–140, 2014.

[8] Annette Bieniusa, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro, Carlos Baquero,
Valter Balegas, and Sérgio Duarte. Brief Announcement: Semantics of Eventually Con-
sistent Replicated Sets. In Distributed Computing - 26th International Symposium, DISC
2012, Salvador, Brazil, October 16-18, 2012. Proceedings, pages 441–442, 2012.

[9] Annette Bieniusa, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro, Carlos Baquero,
Valter Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. CoRR,
abs/1210.3368, 2012.

[10] Garrett Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.

51

52 Bibliography

[11] Robert P. Dilworth. Lattices with Unique Irreducible Decompositions. Annals of Math-
ematics, 41(4):771–777, 1940.

[12] Vitor Enes. ldb. URL https://github.com/vitorenesduarte/ldb, Retrieved 17-jun-
2017.

[13] Vitor Enes. lsim. URL https://github.com/vitorenesduarte/lsim, Retrieved 17-jun-
2017.

[14] Vitor Enes. lsim-dash. URL https://github.com/vitorenesduarte/lsim-dash, Re-
trieved 17-jun-2017.

[15] Vitor Enes, Paulo Sérgio Almeida, and Carlos Baquero. The Single-Writer Principle
in CRDT Composition. In Second Workshop on Programming Models and Languages for
Distributed Computing, PMLDC@ECOOP 2017, Barcelona, Spain, June 20, 2017.

[16] Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and João Leitão. Borrowing an
Identity for a Distributed Counter: Work in Progress Report. In Proceedings of the
3rd International Workshop on Principles and Practice of Consistency for Distributed Data,
PaPoC’17, pages 4:1–4:3. ACM, 2017.

[17] Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Join Decompo-
sitions for Efficient Synchronization of CRDTs after a Network Partition: Work in
progress report. In First Workshop on Programming Models and Languages for Distributed
Computing, PMLDC@ECOOP 2016, Rome, Italy, July 17, page 6, 2016.

[18] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[19] Lasp. partisan. URL https://github.com/lasp-lang/partisan, Retrieved 17-jun-
2017.

[20] Lasp. types. URL https://github.com/lasp-lang/types, Retrieved 17-jun-2017.

[21] João Leitão, José Pereira, and Luı́s E. T. Rodrigues. Epidemic Broadcast Trees. In
26th IEEE Symposium on Reliable Distributed Systems (SRDS 2007), Beijing, China, October
10-12, 2007, pages 301–310, 2007.

[22] João Leitão, José Pereira, and Luı́s E. T. Rodrigues. HyParView: A Membership Pro-
tocol for Reliable Gossip-Based Broadcast. In The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edinburgh,
UK, Proceedings, pages 419–429, 2007.

https://github.com/vitorenesduarte/ldb
https://github.com/vitorenesduarte/lsim
https://github.com/vitorenesduarte/lsim-dash
https://github.com/lasp-lang/partisan
https://github.com/lasp-lang/types

Bibliography 53

[23] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.
Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering. In
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016., pages 467–483, 2016.

[24] Christopher Meiklejohn and Peter Van Roy. Lasp: a language for distributed,
coordination-free programming. In Proceedings of the 17th International Symposium on
Principles and Practice of Declarative Programming, Siena, Italy, July 14-16, 2015, pages
184–195, 2015.

[25] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., 37(1):42–
81, 2005.

[26] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-Free
Replicated Data Types. In Stabilization, Safety, and Security of Distributed Systems - 13th
International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings,
pages 386–400, 2011.

[27] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. Convergent
and Commutative Replicated Data Types. Bulletin of the EATCS, 104:67–88, 2011.

[28] Renzo Sprugnoli. Perfect Hashing Functions: A Single Probe Retrieving Method for
Static Sets. Commun. ACM, 20(11):841–850, 1977.

[29] Albert van der Linde, João Leitão, and Nuno M. Preguiça. ∆-CRDTs: making ∆-CRDTs
delta-based. In Proceedings of the 2nd Workshop on the Principles and Practice of Consistency
for Distributed Data, PaPoC@EuroSys 2016, London, United Kingdom, April 18, 2016, pages
12:1–12:4, 2016.

A
T O P O L O G I E S

Let I be the set of node identifiers and i, j, k ∈ I. Let ni ∈ P(I) be the set of neighbors
∀i ∈ I. Let T ⊆ I× I be a binary relation used to represent an overlay network topology. If
i is connected to j then (i, j) ∈ T (notation: i → j). If i is not connected to j then (i, j) 6∈ T
(notation: i 9 j).
T is assumed to be:

- irreflexive : ∀i ∈ I · i 9 i

- symmetric : ∀i, j ∈ I · i→ j⇒ j→ i

To define a topology where i, j and k are connected defining a line, it’s enough to say
i→ j ∧ j→ k, or simplify by saying i→ j→ k.

i

k j

55

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem Statement
	1.4 Main Contributions
	1.5 Dissertation Outline

	2 Synchronization of State-based CRDTs
	2.1 System model
	2.2 State-based
	2.2.1 Mutators
	2.2.2 Synchronization algorithm

	2.3 Delta-state-based
	2.3.1 -mutators
	2.3.2 Synchronization algorithm

	2.4 Portfolio
	2.5 Summary

	3 Join Decompositions
	3.1 Join Decompositions of State-based CRDTs
	3.1.1 Join-irreducible states

	3.2 Efficient Synchronization of State-based CRDTs
	3.2.1 State-driven Synchronization
	3.2.2 Digest-driven Synchronization

	3.3 Portfolio
	3.4 Summary

	4 Delta-state-based Synchronization algorithm revisited
	4.1 Avoiding back-propagation of -groups
	4.2 Removing redundant state in -groups
	4.3 Synchronizing with a new neighbor
	4.4 Summary

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.2.1 State-based, state-driven and digest-driven synchronization algorithms
	5.2.2 Delta-state-based synchronization algorithm
	5.2.3 Delta-state-based with state-driven and digest-driven synchronization algorithms

	5.3 Summary

	6 Conclusion
	Appendix A Topologies

