

Vitor Enes Carlos Baquero João Leitão

(Universidade do Minho) (Universidade Nova de Lisboa)

Tuesday 3rd October, 2017

Outline

1. Data Replication

- 2. Conflict-free Replicated Data Types
 - State-based CRDTs
 - Efficient Synchronization
 - Results

Data Replication

Data Replication

- Improves availability
 - available even when some replicas are unreachable
- Improves performance
 - reduced latency: geo-distributed replicas give us low-latency links
 - increased throughput: multiple replicas serving data

Data Replication

- Improves availability
 - available even when some replicas are unreachable
- Improves performance
 - reduced latency: geo-distributed replicas give us low-latency links
 - increased throughput: multiple replicas serving data
- Several consistency models, e.g.:
 - Strong Consistency:
 - illusion of a single-copy by synchronizing replicas on each update
 - · very successful within the data center but
 - wide-area networks increase latency of requests and decrease system's throughput
 - Eventual Consistency:
 - synchronize replicas in the background
 - replicas may diverge

Conflict-free Replicated Data

Types

State-based

State-based

State-based

State-based

\$ \$ full state transmission **\$ \$**

How can we avoid replica A sending the full state to replica B?

How can we avoid replica A sending the full state to replica B?

- 1. A knows something about the state of B:
 - Goal: A to compute a delta (δ) of minimum size to be sent to B

How can we avoid replica A sending the full state to replica B?

- 1. A knows something about the state of B:
 - Goal: A to compute a delta (δ) of minimum size to be sent to B
 - Techniques:
 - avoid sending acknowledged entries in δ -buffer (Classic Delta-based CRDTs)
 - ...
 - ...

How can we avoid replica A sending the full state to replica B?

- 1. A knows something about the state of B:
 - Goal: A to compute a delta (δ) of minimum size to be sent to B
 - Techniques:
 - avoid sending acknowledged entries in δ -buffer (Classic Delta-based CRDTs)
 - ...
 - ...
- 2. A knows nothing:
 - Goal: design a protocol that minimizes state transmission

How can we avoid replica A sending the full state to replica B?

- 1. A knows something about the state of B:
 - Goal: A to compute a delta (δ) of minimum size to be sent to B
 - Techniques:
 - avoid sending acknowledged entries in δ -buffer (Classic Delta-based CRDTs)
 - ...
 - ...
- 2. A knows nothing:
 - Goal: design a protocol that minimizes state transmission
 - Techniques:
 - ...
 - ...

$$\mathbf{A} \qquad \{\} \xrightarrow{\mathsf{add}\, a} \{a\}$$

$$\mathbf{B} \qquad \{\} \xrightarrow{\mathsf{add}\, b} \{b\}$$

A
$$\{\}$$
 $\xrightarrow{\text{add } a}$ $\{a\}$ $\{a,b\}$ $\xrightarrow{\{a,b,x\}}$ $\{a,b,x\}$ B $\{\}$ $\xrightarrow{\text{add } b}$ $\{b\}$ $\{a,b\}$ $\{a,b,x\}$

Avoid back-propagation of δ -groups

$$A \qquad \{\} \xrightarrow{\operatorname{add} a} \{a\} \qquad \qquad \{a,b\} \xrightarrow{\operatorname{add} x} \{a,b,x\}$$

$$\{a,b,x\} \qquad \qquad \{a,b,x\}$$

$$\{a,b,x\} \qquad \qquad \{a,b,x\}$$

$$\{a,b,x\} \qquad \qquad \{a,b,x\}$$

How can we avoid replica A sending the full state to replica B?

- 1. A knows something about the state of B:
 - Goal: A to compute a delta (δ) of minimum size to be sent to B
 - Techniques:
 - avoid sending acknowledged entries in δ -buffer (Classic Delta-based CRDTs)
 - avoid back-propagation of δ -groups (BP)
 - ...
- 2. A knows nothing:
 - Goal: design a protocol that minimizes state transmission
 - Techniques:
 - ...
 - ...

- $\mathbf{A} \qquad \{\} \xrightarrow{\mathsf{add}\, a} \{a\}$
- $\mathbf{B} \quad \{\} \xrightarrow{\mathsf{add}\, b} \{b\}$
- $\mathbf{C} \qquad \{\} \xrightarrow{\mathsf{add}\, c} \{c\}$

A
$$\{\}$$
 $\xrightarrow{\text{add } a} \{a\}$ $\{a, b, c\}$
B $\{\}$ $\xrightarrow{\text{add } b} \{b\}$ $\{a, b\}$ $\{a, b, c\}$ $\{a, b, c\}$
C $\{\}$ $\xrightarrow{\text{add } c} \{c\}$ $\{a, c\}$

Remove redundant state in δ -groups

A
$$\{\}$$
 $\xrightarrow{\text{add } a}$ $\{a\}$ $\{a, b, c\}$

B $\{\}$ $\xrightarrow{\text{add } b}$ $\{b\}$ $\{a, b\}$ $\{a, b, c\}$ $\{a, b, c\}$

C $\{\}$ $\xrightarrow{\text{add } c}$ $\{c\}$ $\{a, c\}$

How can we avoid replica A sending the full state to replica B?

- 1. A knows something about the state of B:
 - Goal: A to compute a delta (δ) of minimum size to be sent to B
 - Techniques:
 - avoid sending acknowledged entries in δ -buffer (Classic Delta-based CRDTs)
 - avoid back-propagation of δ -groups (BP)
 - remove redundant state in δ -groups (RR)
- 2. A knows nothing:
 - Goal: design a protocol that minimizes state transmission
 - Techniques:
 - ...
 - ...

State-driven synchronization

$$\mathbf{A} \qquad \{a\} \xrightarrow{\mathsf{add}} \{a, x, y\}$$

$$\mathbf{B} \qquad \{a\} \xrightarrow{\mathsf{add}} \ z \{a,z\}$$

State-driven synchronization

State-driven synchronization

State-driven synchronization

$$\mathbf{A} \qquad \{a\} \xrightarrow{\text{add } x,y} \{a,x,y\}$$

$$\mathbf{B} \qquad \{a\} \xrightarrow{\mathsf{add}} \{a,z\}$$

State-driven synchronization

A
$$\{a\} \xrightarrow{\text{add } x, y} \{a, x, y\} \longrightarrow \{a, x, y\}$$
B $\{a\} \xrightarrow{\text{add } z} \{a, z\}$

State-driven synchronization

State-driven synchronization

How can we avoid replica A sending the full state to replica B?

- 1. A knows something about the state of B:
 - Goal: A to compute a delta (δ) of minimum size to be sent to B
 - Techniques:
 - avoid sending acknowledged entries in δ -buffer (Classic Delta-based CRDTs)
 - avoid back-propagation of δ -groups (BP)
 - remove redundant state in δ -groups (RR)
- 2. A knows nothing:
 - Goal: design a protocol that minimizes state transmission
 - Techniques:
 - state-driven synchronization
 - digest-driven synchronization

Vitor Enes Carlos Baquero João Leitão

(Universidade do Minho) (Universidade Nova de Lisboa)

Tuesday 3rd October, 2017