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leader-based SMR (e.g. paxos)

leader

- forwards it to f+1 
acceptors (say f=2)

- leader receives command

- acceptors send ack & 
leader commits the 
command

what are the issues 
with this approach?

- leader sends 
result to client



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfallsunfairness/high latency 
for faraway clients 



4

leader

leader-based SMR pitfalls

no load balancing 

unfairness/high latency 
for faraway clients 



4

leader

leader-based SMR pitfalls

no load balancing 

unfairness/high latency 
for faraway clients 

single point of failure 



5

paxos log

1
2

3

4

tim
es

ta
m

ps



5

paxos log

1
2

3

4

tim
es

ta
m

ps

W



5

paxos log

1
2

3

4

tim
es

ta
m

ps

W
X



5

paxos log

1
2

3

4

tim
es

ta
m

ps

W
X

Z



5

paxos log

1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed

Z can’t be executed until the 
command with timestamp 1 

by leader C is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z
load balancing 

fairness 

Z can’t be executed until the 
command with timestamp 3 

is committed

Z can’t be executed until the 
command with timestamp 1 

by leader C is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z

as fast as the slowest 

load balancing 

fairness 

Z can’t be executed until the 
command with timestamp 3 

is committed

Z can’t be executed until the 
command with timestamp 1 

by leader C is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z

as fast as the slowest 

root problem: a command’s timestamp 
is computed by a single process

load balancing 

fairness 

Z can’t be executed until the 
command with timestamp 3 

is committed

Z can’t be executed until the 
command with timestamp 1 

by leader C is committed



6

leaderless SMR with tempo



6

leaderless SMR with tempo

- a majority of processes proposes a 
timestamp for the command 



6

leaderless SMR with tempo

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1 ts[Y] = 2



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y
X X

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1 ts[Y] = 2



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y
X X

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1 ts[Y] = 2 ts[X] = 2



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y
X X

- a majority of processes proposes a 
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- the command’s timestamp is the 
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question: when is it safe to 
execute a committed command?
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tempo provides predictable latency

256 clients per process

512 clients per process

99.9th
256 512

atlas f=1 1.3s 2.4s
epaxos 1.7s 3.1s
caesar 1.6s 2.4s

tempo f=1 354ms 367ms

 left is better
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more in the paper 

evaluation framework 
github.com/vitorenesduarte/fantoch

- simple generalization to partial 
replication

- simple recovery mechanism

- permissive fast-path condition

http://github.com/vitorenesduarte/fantoch
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summary
- tempo guarantees progress under a synchronous network 

without the need to contact all replicas 

- timestamping and stability detection are fully decentralized
- tempo handles both full and partial replication scenarios

- tempo provides predictable performance even in contended 
workloads
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