
efficient replication via 
timestamp stability

27 Apr. 2021 @ EuroSys’21

Vitor Enes, Carlos Baquero, Alexey Gotsman, Pierre Sutra 



2

planet-scale replicated systems



2

- fault-tolerance
why?

planet-scale replicated systems



2

- fault-tolerance
why?

planet-scale replicated systems



2

- fault-tolerance
why?

planet-scale replicated systems



2

- fault-tolerance
why?

planet-scale replicated systems



2

- low latency
- fault-tolerance

why?
planet-scale replicated systems



2

- low latency
- fault-tolerance

why?
planet-scale replicated systems



2

- low latency
- fault-tolerance

why?
planet-scale replicated systems



2

- low latency
- fault-tolerance

why?

strong consistency 
linearizability

planet-scale replicated systems



2

- low latency
- fault-tolerance

why?
- state-machine replication 

(SMR)

how?

strong consistency 
linearizability

planet-scale replicated systems



3

leader-based SMR (e.g. paxos)



3

leader-based SMR (e.g. paxos)

leader



3

leader-based SMR (e.g. paxos)

leader

- leader receives command



3

leader-based SMR (e.g. paxos)

leader

- forwards it to f+1 
acceptors (say f=2)

- leader receives command



3

leader-based SMR (e.g. paxos)

leader

- forwards it to f+1 
acceptors (say f=2)

- leader receives command

- acceptors send ack & 
leader commits the 
command



3

leader-based SMR (e.g. paxos)

leader

- forwards it to f+1 
acceptors (say f=2)

- leader receives command

- acceptors send ack & 
leader commits the 
command

- leader sends 
result to client



3

leader-based SMR (e.g. paxos)

leader

- forwards it to f+1 
acceptors (say f=2)

- leader receives command

- acceptors send ack & 
leader commits the 
command

what are the issues 
with this approach?

- leader sends 
result to client



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfalls



4

leader

leader-based SMR pitfallsunfairness/high latency 
for faraway clients 



4

leader

leader-based SMR pitfalls

no load balancing 

unfairness/high latency 
for faraway clients 



4

leader

leader-based SMR pitfalls

no load balancing 

unfairness/high latency 
for faraway clients 

single point of failure 



5

paxos log

1
2

3

4

tim
es

ta
m

ps



5

paxos log

1
2

3

4

tim
es

ta
m

ps

W



5

paxos log

1
2

3

4

tim
es

ta
m

ps

W
X



5

paxos log

1
2

3

4

tim
es

ta
m

ps

W
X

Z



5

paxos log

1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z

Z can’t be executed until the 
command with timestamp 3 

is committed

Z can’t be executed until the 
command with timestamp 1 

by leader C is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z
load balancing 

fairness 

Z can’t be executed until the 
command with timestamp 3 

is committed

Z can’t be executed until the 
command with timestamp 1 

by leader C is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z

as fast as the slowest 

load balancing 

fairness 

Z can’t be executed until the 
command with timestamp 3 

is committed

Z can’t be executed until the 
command with timestamp 1 

by leader C is committed



processes

A B C
1
2

3

4

tim
es

ta
m

ps

leader leader leader

multi-leader SMR (e.g. mencius)

5

paxos log

W X
Z

1
2

3

4

tim
es

ta
m

ps

W
X

Z

as fast as the slowest 

root problem: a command’s timestamp 
is computed by a single process

load balancing 

fairness 

Z can’t be executed until the 
command with timestamp 3 

is committed

Z can’t be executed until the 
command with timestamp 1 

by leader C is committed



6

leaderless SMR with tempo



6

leaderless SMR with tempo

- a majority of processes proposes a 
timestamp for the command 



6

leaderless SMR with tempo

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1 ts[Y] = 2



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y
X X

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1 ts[Y] = 2



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y
X X

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1 ts[Y] = 2 ts[X] = 2



6

leaderless SMR with tempo

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W
Y

Y
X X

- a majority of processes proposes a 
timestamp for the command 

- the command’s timestamp is the 
highest proposal

ts[W] = 1 ts[Y] = 2 ts[X] = 2

question: when is it safe to 
execute a committed command?



7

timestamp stability
process i can only execute command c after its 
timestamp t is stable, i.e., every command with a 
timestamp equal or lower to t is also committed at i



7

timestamp stability
process i can only execute command c after its 
timestamp t is stable, i.e., every command with a 
timestamp equal or lower to t is also committed at i

theorem: timestamp t is stable at 
process i once it knows all the 

proposals up to t by any majority



7

timestamp stability

processes
A B C

1
2

3

4

tim
es

ta
m

ps

process i can only execute command c after its 
timestamp t is stable, i.e., every command with a 
timestamp equal or lower to t is also committed at i

theorem: timestamp t is stable at 
process i once it knows all the 

proposals up to t by any majority



7

timestamp stability

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

ts[W] = 1

process i can only execute command c after its 
timestamp t is stable, i.e., every command with a 
timestamp equal or lower to t is also committed at i

theorem: timestamp t is stable at 
process i once it knows all the 

proposals up to t by any majority



7

timestamp stability

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

ts[W] = 1

process i can only execute command c after its 
timestamp t is stable, i.e., every command with a 
timestamp equal or lower to t is also committed at i

theorem: timestamp t is stable at 
process i once it knows all the 

proposals up to t by any majority

execute(W)



7

timestamp stability

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

ts[W] = 1

Y
Y

ts[Y] = 2

process i can only execute command c after its 
timestamp t is stable, i.e., every command with a 
timestamp equal or lower to t is also committed at i

theorem: timestamp t is stable at 
process i once it knows all the 

proposals up to t by any majority

execute(W)



7

timestamp stability

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

ts[W] = 1

Y
Y

ts[Y] = 2

X X

ts[X] = 2

process i can only execute command c after its 
timestamp t is stable, i.e., every command with a 
timestamp equal or lower to t is also committed at i

theorem: timestamp t is stable at 
process i once it knows all the 

proposals up to t by any majority

execute(W)



7

timestamp stability

processes
A B C

1
2

3

4

tim
es

ta
m

ps

W W

ts[W] = 1

Y
Y

ts[Y] = 2

X X

ts[X] = 2

process i can only execute command c after its 
timestamp t is stable, i.e., every command with a 
timestamp equal or lower to t is also committed at i

theorem: timestamp t is stable at 
process i once it knows all the 

proposals up to t by any majority

execute(W)

execute(X) ; execute(Y) 
since X < Y



8

timestamp stability vs explicit dependencies

- W X Z at A
command arrival order:

- Y W at B
- Z Y at C



8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

- W X Z at A
command arrival order:

- Y W at B
- Z Y at C



8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W

- W X Z at A
command arrival order:

- Y W at B
- Z Y at C



8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y

- W X Z at A
command arrival order:

- Y W at B
- Z Y at C



8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A
command arrival order:

- Y W at B
- Z Y at C



8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A

ts[X] = ?

command arrival order:

- Y W at B
- Z Y at C



8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A

ts[X] = ?

command arrival order:

- Y W at B
- Z Y at C

timestamp 2 is stable, so 
tempo executes W and Y



epaxos / atlas:

8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A

ts[X] = ?

command arrival order:

- Y W at B
- Z Y at C

timestamp 2 is stable, so 
tempo executes W and Y



epaxos / atlas:

8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A

ts[X] = ?

command arrival order:

- Y W at B
- Z Y at C

timestamp 2 is stable, so 
tempo executes W and Y

dep[W] = {Y}

W Y
“depends on”



epaxos / atlas:

8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A

ts[X] = ?

command arrival order:

- Y W at B
- Z Y at C

timestamp 2 is stable, so 
tempo executes W and Y

dep[Y] = {Z}

Z

dep[W] = {Y}

W Y
“depends on”



epaxos / atlas:

8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A

ts[X] = ?

command arrival order:

- Y W at B
- Z Y at C

timestamp 2 is stable, so 
tempo executes W and Y

dep[Y] = {Z}

Z

dep[Z] = {W, X}

X

dep[W] = {Y}

W Y
“depends on”



epaxos / atlas:

8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A

ts[X] = ?

command arrival order:

- Y W at B
- Z Y at C

dep[X] = ?

timestamp 2 is stable, so 
tempo executes W and Y

dep[Y] = {Z}

Z

dep[Z] = {W, X}

X

dep[W] = {Y}

W Y
“depends on”



epaxos / atlas:

8

timestamp stability vs explicit dependencies

processes
A B C

1
2

3

4

tim
es

ta
m

ps

ts[W] = 2

W
W
Y

ts[Y] = 2

Y
Z

Z

ts[Z] = 3

- W X Z at A

ts[X] = ?

command arrival order:

- Y W at B
- Z Y at C

dep[X] = ?

no command is executed!

timestamp 2 is stable, so 
tempo executes W and Y

dep[Y] = {Z}

Z

dep[Z] = {W, X}

X

dep[W] = {Y}

W Y
“depends on”



9

tempo provides predictable latency

 left is better



9

tempo provides predictable latency

256 clients per process

512 clients per process

 left is better



9

tempo provides predictable latency

256 clients per process

512 clients per process

99.9th
256 512

atlas f=1 1.3s 2.4s
epaxos 1.7s 3.1s
caesar 1.6s 2.4s

tempo f=1 354ms 367ms

 left is better



10

more in the paper 
- simple generalization to partial 

replication



10

more in the paper 
- simple generalization to partial 

replication



10

more in the paper 
- simple generalization to partial 

replication

- simple recovery mechanism

- permissive fast-path condition



10

more in the paper 

evaluation framework 
github.com/vitorenesduarte/fantoch

- simple generalization to partial 
replication

- simple recovery mechanism

- permissive fast-path condition

http://github.com/vitorenesduarte/fantoch


11

summary
- tempo guarantees progress under a synchronous network 

without the need to contact all replicas 



11

summary
- tempo guarantees progress under a synchronous network 

without the need to contact all replicas 

- tempo provides predictable performance even in contended 
workloads



11

summary
- tempo guarantees progress under a synchronous network 

without the need to contact all replicas 

- timestamping and stability detection are fully decentralized
- tempo handles both full and partial replication scenarios

- tempo provides predictable performance even in contended 
workloads



efficient replication via 
timestamp stability

27 Apr. 2021 @ EuroSys’21

Vitor Enes, Carlos Baquero, Alexey Gotsman, Pierre Sutra 

vitorenes.org

@vitorenesduarte

http://vitorenes.org

