efficient replication via
timestamp stability

Vitor Enes, Carlos Baguero, Alexey Gotsman, Pierre Sutra

27 Apr. 2021 @ EuroSys’2]



planet-scale replicated systems




planet-scale replicated systems
why?

- fault-tolerance

.




planet-scale replicated systems
why?

- fault-tolerance

.




planet-scale replicated systems
why?

- fault-tolerance

.




planet-scale replicated systems
why?

- fault-tolerance

.




planet-scale replicated systems
why?

- fault-tolerance

‘b - low latency
&,

>»



planet-scale replicated systems
why?

- fault-tolerance

‘b - low latency
&,

>»



planet-scale replicated systems
why?

- fault-tolerance

‘b - low latency
&,




planet-scale replicated systems
why?

- fault-tolerance

‘b - low latency
&,




planet-scale replicated systems

how?? why?
- state-machine replication ‘ - fault-tolerance
(SMR) » - low latency

&
a









T ) leader-based SMR (e.g. paxos)

- leader receives command




- leader receives command, eader-based SMR (e.g. paxos)
' = forwards it to f+1]
acceptors (say f=2)

f
|

i
‘

l




- leader receives command, eader-based SMR (e.g. paxos)
' = forwards it to f+1]
acceptors (say f=2)

- acceptors send ack &
leader commits the
command

f
|

i
‘

l




leader-based SMR (e.g. paxos)

- Ieader receives command \

' = forwards it to f+1
acceptors (say f=2)

- acceptors send ack &
leader commits the
command

- leader sends
result to cllent




leader-based SMR (e.g. paxos)

- Ieader receives command \

' = forwards it to f+1
acceptors (say f=2)

- acceptors send ack &
leader commits the
command

- leader sends .
result to cllent




leader-based SMR pitfalls




leader-based SMR pitfalls




leader-based SMR pitfalls




leader-based SMR pitfalls




leader-based SMR pitfalls




x ®
unfairness/high latency leader-based SMR pitfalls
for faraway clients




x ®
unfairness/high latency leader-based SMR pitfalls
for faraway clients

X

no load balancing




X

unfairness/high latency
for faraway clients
X

no load balancing
X
single point of failure

leader-based SMR pitfalls

.



paxos log

Jd O N
sdwelsawi}



paxos log

Jd O N
sdwelsawi}



paxos log

Jd O N
sdwelsawi}



paxos log

Jd O N
sdwelsawi}



paxos log

timestamps

- N W A

' Z can't be executed until the |

| command with timestamp 3
~ iscommitted |




paxos log multi-leader SMR (e.g. mencius)

&SN
Y 2
&
4

timestamps

- NN W H

timestamps

- N 0 H

' Z can't be executed until the

| command with timestamp 3 | :Ia ;,4 . -
~ iscommitted | e




paxos log multi-leader SMR (e.g. mencius)

SN
// e
4

timestamps

- NN W H

timestamps

' Z can't be executed until the

| command with timestamp 3 | + .




paxos log multi-leader SMR (e.g. mencius)

SN
// e
4

timestamps

- NN W H

timestamps

' Z can't be executed until the

| command with timestamp 3 | + .




paxos log multi-leader SMR (e.g. mencius)

SN
// e
4

timestamps

- NN W H

timestamps

' Z can't be executed until the

| command with timestamp 3 | + .




paxos log

S
// e
4

timestamps

- N W A

< v

' Z can't be executed until the |

| command with timestamp 3
~ iscommitted _/Ji

timestamps

multi-leader SMR (e.g. mencius)

i
Y=o

Processes

N\

' Z can't be executed until the |/

| command with timestamp 1 !
- by leader Cis committed




paxos log multi-leader SMR (e.g. mencius)

9
o 4 — damess |,
= . g_
S 3 load balancing =
; ajed
S o :
E g
e 1 £

' Z can't be executed until the |

| command with timestamp 3
~ iscommitted |

i
Y=o

Processes

\

| Z can't be executed until the |/
. command with timestamp 1 |
by leader Cis com *




paxos log multi-leader SMR (e.g. mencius)

v
o T famess | ,,
3 — ¥
S 3 load balancing =
‘g "
S 2 as fast as the slowest “E’

' Z can't be executed until the

| command with timestamp 3
~ iscommitted |

i
Y=o

Processes

\

' Zcan't be executed ilyte\y
| command with timestamp 1 |
_ by leader Cis committed |




paxos log multi-leader SMR (e.g. mencius)

timestamps

timestamps

' Z can't be executed until the |
| command with timestamp 3 |

| iscommitted

Processes

' Zcan't be executed until the |/
| command with timestamp 1 |
___byleader C is committed

&N
A

'root problem: a command’s timestamp }
‘ is computed by a single process




leaderless SMR with tempo



b - a majorlty of processes proposes a
timestamp for the command

leaderless SMR with tempo



leaderless SMR with tempo

b - a majorlty of processes proposes a
| timestamp for the command ';

= the command’s timestamp is the ll
| highest proposal |

\é_J;F__ R — = —




leaderless SMR with tempo

|

= a majority of processes proposes a 4
| timestamp for the command W 3
- the command’s timestamp is the }l E 3
| highest proposal | ot 5
—— e ——————————— lg

= 1

A B C
processes



leaderless SMR with tempo

- a majority of processes proposes a 4 ---
timestamp for the command ‘
sl | 1
2 | |
awiwif
A B C

processes

- the command’s timestamp is the
| highest proposal

’\\-)~J; e ———— —pe— . e —— e — — . — . ___ I -

timestamps



leaderless SMR with tempo

= a majority of processes proposes a
| timestamp for the command

- the command’s timestamp is the
| highest proposal

’\\-)~J; e ———— —pe— . e —— e — — . — e I -

timestamps

A B C




leaderless SMR with tempo

= a majority of processes proposes a
| timestamp for the command

- the command’s timestamp is the
| highest proposal

’\\-)~J; e ———— —pe— . e —— e — — . — e I -

timestamps




leaderless SMR with tempo

= a majority of processes proposes a
| timestamp for the command ‘

- the command’s timestamp is the l‘
| highest proposal |

A
\ )
. — — —  _ ——  — — — — e — P —— —_— ———  —— ——— — —— e — . — _ N —

timestamps




leaderless SMR with tempo

= a majority of processes proposes a
| timestamp for the command ‘

- the command’s timestamp is the l‘
| highest proposal |

A
\ )
. — — —  _ ——  — — — — e — P —— —_— ———  —— ——— — —— e — . — _ N —

timestamps




leaderless SMR with tempo

| - ’ S |
= a majority of processes proposes a |
| timestamp for the command ';

- the command’s timestamp is the l‘
| highest proposal |

A
\ /
\;th—_ e ——— e p—— —— == S =T — e —— o — - —_—

timestamps




leaderless SMR with tempo

= a majority of processes proposes a
| timestamp for the command

- the command’s timestamp is the
| highest proposal

-~ - e ——————— ___

S — —

timestamps

question: when is it safe to

execute a committed commmand?



— e — )

— — - —_———— L — [P — S —

tlmestamp stablllty
*process | can only execute command c after its
tlmestamp t is stable, I.e., every command with a h
tlmestamp equal or Iower totis also commltted at | 1

\ s— e . _—
—— —_— = L —— e e ——— S T — — S e — — e R
e — B S e —— —_— I _ — R —




tlmestamp stablllty

*process | can only execute command c after its
tlmestamp t is stable, I.e., every command with a h
: tlmestamp equal or Iower totis also commltted at | 1

\ e — _—
I —_ ————— o . N — —————
——— ———— —— — — - — J—— S [ —

— e — )

— — - —_———— L —_— - S —

theorem: timestamp t is stable at

process | once it knows all the
~ proposals up to t by any majority




o — — — —_———— ———— L —_— - — e

tlmestamp stablllty

process | can only execute command c after its
tlmestamp t is stable, I.e., every command with a H

: tlmestamp equal or Iower totis also commltted at | i

\ s— e . _—
— e — = ————— e ——— _— e — e — .
- B e —— — — - - —_— —_— — —_—

~theorem: timestarmp t s stableat § o 4
process | once it knows all the % 3
proposals up to t by any majority -
_ . e 2 5
£
=1

A B C
processes



tlmestamp stablllty

e — — — — —_———— ———— L —_— - — e

process | can only execute command ¢ after its
tlmestamp t Is stable, I.e., every command with a ia
: tlmestamp equal or Iower to tis also commltted at | i

\ e— R —_—
—_——— e — — e ———— e E—— S S e — —
— ———— — —_—— —_— —_— — —_——

theorem: timestamp t is stable at
process | once it knows all the

proposals up to t by any majority

A B C




tlmestamp stablllty

e — — — — —_———— ———— L —_— - — e

process | can only execute command ¢ after its
tlmestamp t Is stable, I.e., every command with a
: tlmestamp equal or Iower to tis also commltted at i i

— e — — e ————— e — e — e ——— — —_ — —_— - I B - - I e —

process | once it knows all the
proposals up to t by any majority

AN W A

A B C




tlmestamp stablllty

e — — — — —_———— ———— L —_— - — e

process | can only execute command ¢ after its
tlmestamp t Is stable, I.e., every command with a
: tlmestamp equal or Iower to tis also commltted at | i

\ —_— . — - — e —
B — —_ — e E——— S S —
e e — B S e —— i — - = N — — — R

process | once it knows all the
proposals up to t by any majority

AN W A




tlmestamp stablllty

e — — — — —_———— ———— L —_— - — e

process | can only execute command ¢ after its
tlmestamp t Is stable, I.e., every command with a
: tlmestamp equal or Iower to tis also commltted at | i

\ —_— . — - — e —
B — —_ — e E——— S S —
— e — B S e —— i — - = N — — — R

process | once it knows all the
proposals up to t by any majority

AN W A




tlmestamp stablllty

e — — — — —_———— ———— L —_— - — e

process | can only execute command ¢ after its
tlmestamp t Is stable, I.e., every command with a ia
: tlmestamp equal or Iower totis also commltted at | i

— —_——— e — e —— s ———— e ——— — — E— —_— e - — — —

process | once it knows all the
proposals up to t by any majority

a N W A

|
|

smce X< Y

——




timestamp stability vs explicit dependencies

command arrival order:

- WXZatA
- YWatB
-ZYatC



timestamp stability vs explicit dependencies
command arrival order:

- WXZatA

- YWatB

-ZYatC

{‘ o 4 J
8 |
| ~ 3
2, ,
E ‘
T 1 }
A B C

I

Processes



timestamp stability vs explicit dependencies

command arrival order:

- WXZatA
- YWatB
-ZYatC




timestamp stability vs explicit dependencies

command arrival order:

- WXZatA
- YWatB
-ZYatC




timestamp stability vs explicit dependencies

command arrival order:
-WXZatA




timestamp stability vs explicit dependencies

command arrival order:
-WXZatA

timestamps




timestamp stability vs explicit dependencies

command arrival order:
-WXZatA

.‘tlmestamp 2is stable so
\tempo executes Wand Y j‘



timestamp stability vs explicit dependencies

— command arrival order:
epaxos / atlas: | - WXZatA

.'tlmestamp 2is stable S0 |
\tempo executes Wand Y j‘



timestamp stability vs explicit dependencies
- command arrival order:

(== L
| |

| epaxos / atlas: | - WXZatA

—» “depends on”

wW—Y 1
|

.'tlmestamp 2is stable S0 |
\tempo executes Wand Y j‘



timestamp stability vs explicit dependencies
- command arrival order:

| |

~ epaxos [/ atlas: | - WXZatA

—» “depends on”

W—Y — 2 1
|

.'tlmestamp 2is stable S0 |
\tempo executes Wand Y j‘



timestamp stability vs explicit dependencies
- command arrival order:

(== L
| |

| epaxos / atlas: | - WXZatA

—» “depends on”

‘ WY——-}Z —» X
|

.'tlmestamp 2is stable S0 |
\tempo executes Wand Y j‘



timestamp stability vs explicit dependencies
- command arrival order:

| |

| epaxos / atlas: | - WXZatA

—» “depends on”

‘ WY——-}Z —» X
|

\‘ [

{ |
‘ i |
I \ B, ) : ‘
’1 ( - I
| i N
I ! 1 |
I‘ n
'. |
\' |
| | :
| i
- ] - |

.'tlmestamp 2is stable S0 |
\tempo executes Wand Y j‘



timestamp stability vs explicit dependencies
e command arrival order:

(== i L
| |

| epaxos / atlas: | - WXZatA

—» “depends on”

‘ WY——-}Z —» X
|

——

.'tlmestamp 2is stable S0 |
\tempo executes Wand Y j‘



tempo provides predictable latency

99.99
99.0

97.0

percentiles

95.0
99.99
99.0

97.0

percentiles

95.0

Tempof=1 =@&- Atlasf=1
—&— Tempof=2 —m- Atlasf =2

Caesar
--¢ - EPaxos

100

230

550 1200 2800
latency (ms) [log-scale]

6500

15000



tempo provides predictable latency

99.99
99.0

97.0

percentiles

95.0
99.99
99.0

97.0

percentiles

95.0

100

Tempof=1 =@&- Atlasf=1

—d— Tempof=2 —m- Atlasf =2 --@- EPaxos

Caesar

| 512 clients per process |

N e — —— ————— —————— . —— —

550 1200 2800
latency (ms) [log-scale]

6500

15000



tempo provides predictable latency

Tempof=1 =@&- Atlasf=1 Caesar
—h— Tempof=2 —m- Atlasf =2 --@- EPaxos
99.99
o 99.0
 oooth [N
S
1.3s 2.4s 95 0
epaxos 1.7s 3.1s 09 .99
16s  2.4s o 99.0
354ms 367ms €
o 97.0
()
Q.
95.0
100 230 550 1200 2800 6500 15000

latency (ms) [log-scale]




more In the paper

- simple generalization to partial
replication



more In the paper

o - - M Tempo A Janus*w = 5%

- S|mp.>le generallzatlon to partial SN anuct w = 0% B Januc w = 0%
replication _ 1000
2 800 -

S N 7

T oo , , N

F 600 ? Z g g

3 4004 ' 7 % f 7

: % 7 Z Z Z 2

5 Z Z Z 7 Z Z

X 200 % % / % % %

=L AN N AN ANl AN 7,

zipf = 0.5 zipf=0.7 zipf=0.5 zipf=0.7 zipf=0.5 zipf=0.7
2 shards 4 shards 6 shards

10



more In the paper

- : : ~ Tempo A Janus*w = 5%

- S|mp.>le generallzatlon to partial — Janu_f*w= 0% B Januetw = 50%
replication 1000

- permissive fast-path condition ¢ N, 7

| | El 600 - ? ? g g

- simple recovery mechanism  § 4o . g g NN

N, NN NOa RN ¥

o

zipf = 0.5 zipf=0.7 zipf=0.5 zipf=0.7 zipf=0.5 zipf=0.7
2 shards 4 shards 6 shards

10



more In the paper

- <l " " : Tempo A Janus*w = 5%
S|mp.>le generallzatlon to partial o o 0% B L oo
replication 1000

800 -

- permissive fast-path condition

600 -

- simple recovery mechanism

S
o
o

N
o
o

max. throughput (K ops/s)

ANNNANNNY
DNANNNNNNNNNN
ANANNNNNNNNNN
ANNNNNNNNNNNNNNN
ANAANNANNNNNNNNNNNN

o

zipf = 0.5 zipf=0.7 zipf=0.5 zipf=0.7 zipf=0.5 zipf=0.7
2 shards 4 shards 6 shards

evaluation framework
github.com/vitorenesduarte/fantoch

10


http://github.com/vitorenesduarte/fantoch

summary

- tempo guarantees progress under a synchronous network
without the need to contact all replicas

11



summary

- tempo guarantees progress under a synchronous network
without the need to contact all replicas

- tempo provides predictable performance even in contended
workloads

11



summary

- tempo guarantees progress under a synchronous network
without the need to contact all replicas

- tempo provides predictable performance even in contended
workloads

- tempo handles both full and partial replication scenarios
- timestamping and stability detection are fully decentralized

11



efficient replication via
timestamp stability

Vitor Enes, Carlos Baguero, Alexey Gotsman, Pierre Sutra

27 Apr. 2021 @ EuroSys’2]

vitorenes.org

Qvitorenesduarte ¥


http://vitorenes.org

