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leader-based SMR (e.g. paxos)

leader

- forwards it to f+1 
acceptors (say f=2)

- leader receives command

- acceptors send ack & leader 
commits the command

what are the issues 
with this approach?

- leader sends 
result to client
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no load balancing 

unfairness/high latency 
for faraway clients 

single point of failure 
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leaderless SMR (e.g. epaxos)
- replica R receives command

- if all replies match:
- R commits the command

coordinator

- forwards it to a quorum
- quorum replies

- else:
- R contacts quorum again
- quorum replies
- R commits the command

slow path

fast path

what are the advantages 
of this approach?
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leaderless SMR

no load balancing 

unfairness/high latency 
for faraway clients 

single point of failure 

leader-based SMR
fairer latency 
distribution 

load balancing 

higher availability 

partial replication -> 
higher scalability 

X

why haven’t
leaderless protocols

been adopted by industry?

¡¡NOT PRACTICAL!!
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a note on commutativity

we say that commands conflict
when they do not commute

- leaderless protocols typically exploit the fact that commands frequently commute

- and when they do, commands don’t have to be ordered (improving performance)
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small quorums single round-trip

paxos

epaxos

atlas

tempo

low latency - SMR protocols

f+1

f is always minority :(

3r/4

atlas

tempo
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- we ran a link-monitoring experiment on Google Cloud Platform
- 17 DCs where each DC periodically pings the remaining DCs

- after 3 months, we searched for concurrent link slowdowns
- they were always incident to 1 DC

always this! never this!

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare

low latency - bounds on failures
- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

observation: this is unnecessarily high

f=1 or f=2
is acceptable
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flexible fast-path condition!
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low latency - flexible fast path condition
fast path condition: each conflict was reported by at least f processes

atlas

dep = {b}
commit

dep = {a, b, c, d}
commit

epaxos would take the slow path in both examples 

b reported only 
by 1< f process
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- when a command is submitted, the coordinator fixes the fast quorum

- recovery procedure reconstructs the committed value from within the fast quorum

- epaxos tries to recover from any quorum, which makes recovery very complex

simple recovery
atlas tempo
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tim
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m
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- fast quorum processes propose a 
timestamp for the command 

- the committed timestamp is the 
highest proposal

a a

ts[a] = 1

b
b

ts[b] = 2

c c

ts[c] = 2

question: when is it safe to execute a 
committed command?

tempo

- commands are executed in 
timestamp order
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20

command execution

b
b

ts[b] = 2

a process can only execute a command committed with 
timestamp t once it knows all proposals up to t by any majority

c c

ts[c] = 2

execute(b) ; execute(c)
since b < c
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have all proposals up to 2 by a majority,
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predictable performance
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all commands but b are committed
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predictable / superior performance
tempo

parallelism:

- timestamping & command execution are fully decentralized & parallel
scale
vertically

in epaxos & atlas, command execution is sequential!!

 scale horizontallypartial replication:

- the protocol easily generalizes to this setting
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evaluation
protocols considered:

- (flexible) paxos
- epaxos
- caesar (not in this presentation)

- janus (not in this presentation)

- atlas
- tempo

atlas
tempo

focus on predictable performance:

- throughput

- tail latency

github.com/vitorenesduarte/fantoch
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- atlas & tempo are the first leaderless protocols parameterized by f
- small fast quorums: the protocols trade off higher fault tolerance for 

lower latency

- tempo handles both full and partial replication scenarios
- tempo provides predictable performance even in contended workloads

summary

- atlas & tempo fix the fast quorum, simplifying recovery

leaderless protocols are becoming practical!!
cassandra will release accord, a new timestamp-based 

leaderless protocol (like tempo)
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