
planet-scale
leaderless

consensus
Vitor Enes

Dr. Alexey Gotsman, Research Professor at IMDEA
Dr. Carlos Baquero, Professor at FEUP

2

planet-scale replicated systems

2

- fault-tolerance
why?

planet-scale replicated systems

2

- fault-tolerance
why?

planet-scale replicated systems

2

- fault-tolerance
why?

planet-scale replicated systems

2

- fault-tolerance
why?

planet-scale replicated systems

2

- low latency
- fault-tolerance

why?
planet-scale replicated systems

2

- low latency
- fault-tolerance

why?
planet-scale replicated systems

2

- low latency
- fault-tolerance

why?
planet-scale replicated systems

2

- low latency
- fault-tolerance

why?

strong consistency
linearizability

planet-scale replicated systems

2

- low latency
- fault-tolerance

why?
state-machine replication

(SMR)

how?

strong consistency
linearizability

planet-scale replicated systems

3

leader-based SMR (e.g. paxos)

3

leader-based SMR (e.g. paxos)

leader

3

leader-based SMR (e.g. paxos)

leader

- leader receives command

3

leader-based SMR (e.g. paxos)

leader

- forwards it to f+1
acceptors (say f=2)

- leader receives command

3

leader-based SMR (e.g. paxos)

leader

- forwards it to f+1
acceptors (say f=2)

- leader receives command

- acceptors send ack & leader
commits the command

3

leader-based SMR (e.g. paxos)

leader

- forwards it to f+1
acceptors (say f=2)

- leader receives command

- acceptors send ack & leader
commits the command

- leader sends
result to client

3

leader-based SMR (e.g. paxos)

leader

- forwards it to f+1
acceptors (say f=2)

- leader receives command

- acceptors send ack & leader
commits the command

what are the issues
with this approach?

- leader sends
result to client

4

leader

leader-based SMR pitfalls

4

leader

leader-based SMR pitfalls

4

leader

leader-based SMR pitfalls

4

leader

leader-based SMR pitfalls

4

leader

leader-based SMR pitfalls

4

leader

leader-based SMR pitfallsunfairness/high latency
for faraway clients

4

leader

leader-based SMR pitfalls

no load balancing

unfairness/high latency
for faraway clients

4

leader

leader-based SMR pitfalls

no load balancing

unfairness/high latency
for faraway clients

single point of failure

5

leaderless SMR (e.g. epaxos)

5

leaderless SMR (e.g. epaxos)
- replica R receives command

5

leaderless SMR (e.g. epaxos)
- replica R receives command

coordinator

5

leaderless SMR (e.g. epaxos)
- replica R receives command

coordinator

- forwards it to a quorum

5

leaderless SMR (e.g. epaxos)
- replica R receives command

coordinator

- forwards it to a quorum
- quorum replies

5

leaderless SMR (e.g. epaxos)
- replica R receives command

- if all replies match:
- R commits the command

coordinator

- forwards it to a quorum
- quorum replies

5

leaderless SMR (e.g. epaxos)
- replica R receives command

- if all replies match:
- R commits the command

coordinator

- forwards it to a quorum
- quorum replies

- else:
- R contacts quorum again
- quorum replies
- R commits the command

5

leaderless SMR (e.g. epaxos)
- replica R receives command

- if all replies match:
- R commits the command

coordinator

- forwards it to a quorum
- quorum replies

- else:
- R contacts quorum again
- quorum replies
- R commits the command

slow path

fast path

5

leaderless SMR (e.g. epaxos)
- replica R receives command

- if all replies match:
- R commits the command

coordinator

- forwards it to a quorum
- quorum replies

- else:
- R contacts quorum again
- quorum replies
- R commits the command

slow path

fast path

5

leaderless SMR (e.g. epaxos)
- replica R receives command

- if all replies match:
- R commits the command

coordinator

- forwards it to a quorum
- quorum replies

- else:
- R contacts quorum again
- quorum replies
- R commits the command

slow path

fast path

what are the advantages
of this approach?

6

leaderless SMR advantages

coordinator

fairer latency
distribution

6

leaderless SMR advantages

coordinator

fairer latency
distribution

coordinator

6

leaderless SMR advantages

coordinator

fairer latency
distribution

coordinator

6

leaderless SMR advantages

coordinator

fairer latency
distribution

load balancing

coordinator

6

leaderless SMR advantages

coordinator

fairer latency
distribution

load balancing

higher availability

coordinator

6

leaderless SMR advantages

coordinator

fairer latency
distribution

load balancing

higher availability

coordinator

6

leaderless SMR advantages

coordinator

fairer latency
distribution

load balancing

higher availability

coordinator

7

leaderless SMR

no load balancing

unfairness/high latency
for faraway clients

single point of failure

leader-based SMR
fairer latency
distribution

load balancing

higher availability

X

7

leaderless SMR

no load balancing

unfairness/high latency
for faraway clients

single point of failure

leader-based SMR
fairer latency
distribution

load balancing

higher availability

partial replication ->
higher scalability

X

7

leaderless SMR

no load balancing

unfairness/high latency
for faraway clients

single point of failure

leader-based SMR
fairer latency
distribution

load balancing

higher availability

partial replication ->
higher scalability

X

why haven’t
leaderless protocols

been adopted by industry?

7

leaderless SMR

no load balancing

unfairness/high latency
for faraway clients

single point of failure

leader-based SMR
fairer latency
distribution

load balancing

higher availability

partial replication ->
higher scalability

X

why haven’t
leaderless protocols

been adopted by industry?

¡¡NOT PRACTICAL!!

8

can leaderless SMR
be practical for

planet-scale systems?

8

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

8

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

atlas
tempo

9

a note on commutativity

- leaderless protocols typically exploit the fact that commands frequently commute

- and when they do, commands don’t have to be ordered (improving performance)

9

a note on commutativity

we say that commands conflict
when they do not commute

- leaderless protocols typically exploit the fact that commands frequently commute

- and when they do, commands don’t have to be ordered (improving performance)

10

small quorums single round-trip

paxos

epaxos

atlas

tempo

low latency - SMR protocols

atlas

tempo

10

small quorums single round-trip

paxos

epaxos

atlas

tempo

low latency - SMR protocols

f+1

atlas

tempo

10

small quorums single round-trip

paxos

epaxos

atlas

tempo

low latency - SMR protocols

f+1

3r/4

atlas

tempo

10

small quorums single round-trip

paxos

epaxos

atlas

tempo

low latency - SMR protocols

f+1

f is always minority :(

3r/4

atlas

tempo

11

low latency - bounds on failures
- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

11

low latency - bounds on failures
- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

observation: this is unnecessarily high

11

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare

low latency - bounds on failures
- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

observation: this is unnecessarily high

11

- we ran a link-monitoring experiment on Google Cloud Platform
- 17 DCs where each DC periodically pings the remaining DCs

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare

low latency - bounds on failures
- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

observation: this is unnecessarily high

11

- we ran a link-monitoring experiment on Google Cloud Platform
- 17 DCs where each DC periodically pings the remaining DCs

- after 3 months, we searched for concurrent link slowdowns
- they were always incident to 1 DC

always this! never this!

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare

low latency - bounds on failures
- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

observation: this is unnecessarily high

11

- we ran a link-monitoring experiment on Google Cloud Platform
- 17 DCs where each DC periodically pings the remaining DCs

- after 3 months, we searched for concurrent link slowdowns
- they were always incident to 1 DC

always this! never this!

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare

low latency - bounds on failures
- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

observation: this is unnecessarily high

f=1 or f=2
is acceptable

12

small quorums single round-trip

paxos

epaxos

atlas

tempo

low latency - SMR protocols

f+1

3r/4

atlas

tempo

12

small quorums single round-trip

paxos

epaxos

atlas

tempo

low latency - SMR protocols

f+1

3r/4

r/2+f

r/2+f

small for small
values of f

atlas

tempo

12

small quorums single round-trip

paxos

epaxos

atlas

tempo

only from the
leader

low latency - SMR protocols

f+1

3r/4

r/2+f

r/2+f

small for small
values of f

atlas

tempo

12

small quorums single round-trip

paxos

epaxos

atlas

tempo

only from the
leader

only if replies
match

low latency - SMR protocols

f+1

3r/4

r/2+f

r/2+f

small for small
values of f

atlas

tempo

12

small quorums single round-trip

paxos

epaxos

atlas

tempo

only from the
leader

only if replies
match

low latency - SMR protocols

f+1

3r/4

flexible fast-path condition!

r/2+f

r/2+f

small for small
values of f

atlas

tempo

13

low latency - flexible fast path condition
fast path condition: each conflict was reported by at least f processes

atlas

13

low latency - flexible fast path condition
fast path condition: each conflict was reported by at least f processes

atlas

13

low latency - flexible fast path condition
fast path condition: each conflict was reported by at least f processes

atlas

13

low latency - flexible fast path condition
fast path condition: each conflict was reported by at least f processes

atlas

b reported only
by 1< f process

13

low latency - flexible fast path condition
fast path condition: each conflict was reported by at least f processes

atlas

epaxos would take the slow path in both examples

b reported only
by 1< f process

13

low latency - flexible fast path condition
fast path condition: each conflict was reported by at least f processes

atlas

dep = {b}
commit

dep = {a, b, c, d}
commit

epaxos would take the slow path in both examples

b reported only
by 1< f process

14

command execution

committed dependencies (and arbitration)
determine command execution order

atlas

epaxos
introduced

this idea

14

command execution

committed dependencies (and arbitration)
determine command execution order

dep[a] = { }
dep[b] = {a, c}
dep[c] = {a, b}

atlas

epaxos
introduced

this idea

a
c

b

14

command execution

committed dependencies (and arbitration)
determine command execution order

dep[a] = { }
dep[b] = {a, c}
dep[c] = {a, b}

atlas

epaxos
introduced

this idea

a
c

b

14

command execution

committed dependencies (and arbitration)
determine command execution order

dep[a] = { }
dep[b] = {a, c}
dep[c] = {a, b}

1. execute(a) ; execute(b) ; execute(c) if b < c
2. execute(a) ; execute(c) ; execute(b) if b > c

atlas

epaxos
introduced

this idea

a
c

b

14

command execution

committed dependencies (and arbitration)
determine command execution order

dep[a] = { }
dep[b] = {a, c}
dep[c] = {a, b}

1. execute(a) ; execute(b) ; execute(c) if b < c
2. execute(a) ; execute(c) ; execute(b) if b > c

atlas

epaxos
introduced

this idea

15

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

atlas
tempo

15

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

atlas
tempo

16

- when a command is submitted, the coordinator fixes the fast quorum

- recovery procedure reconstructs the committed value from within the fast quorum

- epaxos tries to recover from any quorum, which makes recovery very complex

simple recovery
atlas tempo

17

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

atlas
tempo

17

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

atlas
tempo

atlas

18

lack of predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

&
epaxos

atlas

18

lack of predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

all commands but b are committed

&
epaxos

atlas

18

d ba c
“depends on”

lack of predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

all commands but b are committed

&
epaxos

no command is executed!

atlas

18

d ba c
“depends on”

lack of predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

all commands but b are committed

&
epaxos

no command is executed!

atlas

18

d ba c
“depends on”

theory: don’t terminate
practice: high tail latency

lack of predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

all commands but b are committed

&
epaxos

no command is executed!

atlas

18

d ba c
“depends on”tempo

theory: don’t terminate
practice: high tail latency

lack of predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

all commands but b are committed

&
epaxos

19

timestamping

- fast quorum processes propose a
timestamp for the command

tempo

19

timestamping

- fast quorum processes propose a
timestamp for the command

- the committed timestamp is the
highest proposal

tempo

19

timestamping

- fast quorum processes propose a
timestamp for the command

- the committed timestamp is the
highest proposal

tempo

- commands are executed in
timestamp order

19

timestamping

processes
p1 p2 p3

1
2

3

4

tim
es

ta
m

ps

- fast quorum processes propose a
timestamp for the command

- the committed timestamp is the
highest proposal

tempo

- commands are executed in
timestamp order

19

timestamping

processes
p1 p2 p3

1
2

3

4

tim
es

ta
m

ps

- fast quorum processes propose a
timestamp for the command

- the committed timestamp is the
highest proposal

a a

ts[a] = 1

tempo

- commands are executed in
timestamp order

19

timestamping

processes
p1 p2 p3

1
2

3

4

tim
es

ta
m

ps

- fast quorum processes propose a
timestamp for the command

- the committed timestamp is the
highest proposal

a a

ts[a] = 1

b
b

ts[b] = 2

tempo

- commands are executed in
timestamp order

19

timestamping

processes
p1 p2 p3

1
2

3

4

tim
es

ta
m

ps

- fast quorum processes propose a
timestamp for the command

- the committed timestamp is the
highest proposal

a a

ts[a] = 1

b
b

ts[b] = 2

c c

ts[c] = 2

tempo

- commands are executed in
timestamp order

19

timestamping

processes
p1 p2 p3

1
2

3

4

tim
es

ta
m

ps

- fast quorum processes propose a
timestamp for the command

- the committed timestamp is the
highest proposal

a a

ts[a] = 1

b
b

ts[b] = 2

c c

ts[c] = 2

question: when is it safe to execute a
committed command?

tempo

- commands are executed in
timestamp order

20

command execution

a process can only execute a command committed with
timestamp t once it knows all proposals up to t by any majority

processes
p1 p2 p3

1
2

3

4

tim
es

ta
m

ps

a a

ts[a] = 1

execute(a)

20

command execution

a process can only execute a command committed with
timestamp t once it knows all proposals up to t by any majority

processes
p1 p2 p3

1
2

3

4

tim
es

ta
m

ps

a a

ts[a] = 1

execute(a)

20

command execution

b
b

ts[b] = 2

a process can only execute a command committed with
timestamp t once it knows all proposals up to t by any majority

processes
p1 p2 p3

1
2

3

4

tim
es

ta
m

ps

a a

ts[a] = 1

execute(a)

20

command execution

b
b

ts[b] = 2

a process can only execute a command committed with
timestamp t once it knows all proposals up to t by any majority

c c

ts[c] = 2

execute(b) ; execute(c)
since b < c

no command is executed!

atlas

21

d ba c
“depends on”tempo

theory: don’t terminate
practice: high tail latency

predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

all commands but b are committed

&
epaxos

no command is executed!

atlas

21

processes
p1 p2 p3

1
2

3

tim
es

ta
m

ps

a
a
c

c
d

d
d ba c

“depends on”tempo

theory: don’t terminate
practice: high tail latency

predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

all commands but b are committed

&
epaxos

no command is executed!

atlas

21

processes
p1 p2 p3

1
2

3

tim
es

ta
m

ps

a
a
c

c
d

d
d ba c

“depends on”tempo

theory: don’t terminate
practice: high tail latency

have all proposals up to 2 by a majority,
so tempo executes a and c

predictable performance

p1
c d

c

a

b

d

a

p2 p3
command arrival order

all commands but b are committed

&
epaxos

22

predictable / superior performance
tempo

parallelism:

- timestamping & command execution are fully decentralized & parallel

22

predictable / superior performance
tempo

parallelism:

- timestamping & command execution are fully decentralized & parallel
scale
vertically

22

predictable / superior performance
tempo

parallelism:

- timestamping & command execution are fully decentralized & parallel
scale
vertically

in epaxos & atlas, command execution is sequential!!

22

predictable / superior performance
tempo

parallelism:

- timestamping & command execution are fully decentralized & parallel
scale
vertically

in epaxos & atlas, command execution is sequential!!

 scale horizontallypartial replication:

- the protocol easily generalizes to this setting

23

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

atlas
tempo

23

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

atlas
tempo

24

evaluation
protocols considered:

- (flexible) paxos
- epaxos
- caesar (not in this presentation)

- janus (not in this presentation)

- atlas
- tempo

atlas
tempo

24

evaluation
protocols considered:

- (flexible) paxos
- epaxos
- caesar (not in this presentation)

- janus (not in this presentation)

- atlas
- tempo

atlas
tempo

github.com/vitorenesduarte/fantoch

24

evaluation
protocols considered:

- (flexible) paxos
- epaxos
- caesar (not in this presentation)

- janus (not in this presentation)

- atlas
- tempo

atlas
tempo

focus on predictable performance:

- throughput

- tail latency

github.com/vitorenesduarte/fantoch

 right is better

lower
is
better

25

throughput
r = 5

clients per replica: 32 -> 20k

 right is better

lower
is
better

25

throughput

10% conflicts

2% conflicts

r = 5
clients per replica: 32 -> 20k

 right is better

lower
is
better

25

throughput

10% conflicts

2% conflicts

r = 5
clients per replica: 32 -> 20k

ops/s 2% 10%

fpaxos f =1 53K 53K

atlas f=1 129K 83K

tempo f=1 229K 230K

 right is better

lower
is
better

25

throughput

10% conflicts

2% conflicts

r = 5
clients per replica: 32 -> 20k

ops/s 2% 10%

fpaxos f =1 53K 53K

atlas f=1 129K 83K

tempo f=1 229K 230K

 right is better

lower
is
better

25

throughput

10% conflicts

2% conflicts

r = 5
clients per replica: 32 -> 20k

ops/s 2% 10%

fpaxos f =1 53K 53K

atlas f=1 129K 83K

tempo f=1 229K 230K

 right is better

lower
is
better

25

throughput

10% conflicts

2% conflicts

r = 5
clients per replica: 32 -> 20k

ops/s 2% 10%

fpaxos f =1 53K 53K

atlas f=1 129K 83K

tempo f=1 229K 230K

 right is better

lower
is
better

25

throughput

10% conflicts

2% conflicts

r = 5
clients per replica: 32 -> 20k

ops/s 2% 10%

fpaxos f =1 53K 53K

atlas f=1 129K 83K

tempo f=1 229K 230K

 right is better

lower
is
better

25

throughput

10% conflicts

2% conflicts

r = 5
clients per replica: 32 -> 20k

ops/s 2% 10%

fpaxos f =1 53K 53K

atlas f=1 129K 83K

tempo f=1 229K 230K

26

tail latency

 left is better

r = 5
2% conflicts

26

tail latency

256 clients per replica

512 clients per replica

 left is better

r = 5
2% conflicts

26

tail latency

256 clients per replica

512 clients per replica

99.9th
256 512

atlas f=1 1.3s 2.4s

epaxos 1.7s 3.1s

tempo f=1 354ms 367ms

 left is better

r = 5
2% conflicts

26

tail latency

256 clients per replica

512 clients per replica

99.9th
256 512

atlas f=1 1.3s 2.4s

epaxos 1.7s 3.1s

tempo f=1 354ms 367ms

 left is better

r = 5
2% conflicts

26

tail latency

256 clients per replica

512 clients per replica

99.9th
256 512

atlas f=1 1.3s 2.4s

epaxos 1.7s 3.1s

tempo f=1 354ms 367ms

 left is better

r = 5
2% conflicts

26

tail latency

256 clients per replica

512 clients per replica

99.9th
256 512

atlas f=1 1.3s 2.4s

epaxos 1.7s 3.1s

tempo f=1 354ms 367ms

 left is better

r = 5
2% conflicts

26

tail latency

256 clients per replica

512 clients per replica

99.9th
256 512

atlas f=1 1.3s 2.4s

epaxos 1.7s 3.1s

tempo f=1 354ms 367ms

 left is better

r = 5
2% conflicts

27

- atlas & tempo are the first leaderless protocols parameterized by f
- small fast quorums: the protocols trade off higher fault tolerance for

lower latency

summary

27

- atlas & tempo are the first leaderless protocols parameterized by f
- small fast quorums: the protocols trade off higher fault tolerance for

lower latency

summary

- atlas & tempo fix the fast quorum, simplifying recovery

27

- atlas & tempo are the first leaderless protocols parameterized by f
- small fast quorums: the protocols trade off higher fault tolerance for

lower latency

- tempo handles both full and partial replication scenarios
- tempo provides predictable performance even in contended workloads

summary

- atlas & tempo fix the fast quorum, simplifying recovery

27

- atlas & tempo are the first leaderless protocols parameterized by f
- small fast quorums: the protocols trade off higher fault tolerance for

lower latency

- tempo handles both full and partial replication scenarios
- tempo provides predictable performance even in contended workloads

summary

- atlas & tempo fix the fast quorum, simplifying recovery

leaderless protocols are becoming practical!!
cassandra will release accord, a new timestamp-based

leaderless protocol (like tempo)

28

State-Machine Replication for Planet-Scale Systems @ EuroSys’20
Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, Pierre Sutra.

Efficient Replication via Timestamp Stability @ EuroSys’21
Vitor Enes, Carlos Baquero, Alexey Gotsman, Pierre Sutra.

atlas

tempo

publications

tempo

28

State-Machine Replication for Planet-Scale Systems @ EuroSys’20
Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, Pierre Sutra.

Efficient Replication via Timestamp Stability @ EuroSys’21
Vitor Enes, Carlos Baquero, Alexey Gotsman, Pierre Sutra.

atlas

tempo

publications
& acknowledgments

tempo

28

State-Machine Replication for Planet-Scale Systems @ EuroSys’20
Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, Pierre Sutra.

Efficient Replication via Timestamp Stability @ EuroSys’21
Vitor Enes, Carlos Baquero, Alexey Gotsman, Pierre Sutra.

atlas

tempo

publications
& acknowledgments

tempo

