planet-scale
leaderless
consensus

Vitor Enes
Dr. Alexey Gotsman, Research Professor at IMDEA
Dr. Carlos Baquero, Professor at FEUP

planet-scale replicated systems

planet-scale replicated systems
why?

- fault-tolerance

.

planet-scale replicated systems
why?

- fault-tolerance

.

planet-scale replicated systems
why?

- fault-tolerance

.

planet-scale replicated systems
why?

- fault-tolerance

.

planet-scale replicated systems
why?
- fault-tolerance

‘b - low latency
a.

>»

2!

planet-scale replicated systems
why?
- fault-tolerance

‘b - low latency
a.

>»

=

planet-scale replicated systems
why?
- fault-tolerance

‘b - low latency
a.

planet-scale replicated systems
why?
- fault-tolerance

‘b - low latency
a.

>»

strong consistency
linearizability

planet-scale replicated systems

how? why?
state-machine replication ‘ - fault-tolerance
(SMR) » - low latency

&
a

>»

strong consistency
linearizability

e
/

leader-based SMR (e.g. paxos)

e
/

leader-based SMR (e.g. paxos)

- leader receives command

oo leader-based SMR (e.g. paxos)

g
V4

- leader receives command

oo leader-based SMR (e.g. paxos)

| = forwards it to f+1
acceptors (say f=2)

g
V4

oo leader-based SMR (e.g. paxos)

- leader receives command |
w |

| = forwards it to f+1
acceptors (say f=2)

|- acceptors send ack & leader ; \»_’
commits the command 75\ AN
l {‘ v" "
\

|
|

|
\
|
l

N — — e
= - — —_— p— —_—

——— — — ———— — e e

leader receives command

. “ Ieader-based SMR (e-g' anOS)

forwards it to f+1
acceptors (say f=2)

acceptors send ack & Ieader . \
commits the command

leader sends
result to client

ir v" "

Ieader K

) leader-based SMR (e.g. paxos)

= leader receives command t
* |

| = forwards it to f+1
~acceptors (say f=2)

acceptors send ack & leader ; \;”
commits the command ’ 'l')
' v" "

a

leader sends
result to client

>»

leader-based SMR pitfalls

leader-based SMR pitfalls

leader-based SMR pitfalls

leader-based SMR pitfalls

leader-based SMR pitfalls

nfairess/high latencyl leader-based SMR pitfalls
for faraway clients

nfairess/high latencyl leader-based SMR pitfalls
for faraway clients

X

no load balancing

X

unfairness/high latency
for faraway clients
X

no load balancing
X
single point of failure

leader-based SMR pitfalls

.

leaderless SMR (e.g. epaxos)

leaderless SMR (e.g. epaxos)

- replica R receives command |

(
I
\\ \;

leaderless SMR (e.g. epaxos)

(' — =
|

- replica R receives command |

leaderless SMR (e.g. epaxos)

- replica R receives command |

|

|
\\ |
|

- forwards it to a quorum

o leaderless SMR (e.g. epaxos)

= replica R receives command |
- forwards it to a quorum |
- quorum replies

leaderless SMR (e.g. epaxos)

o —
1- replica R receives command

|- forwards it to a quorum
- quorum replies

- If all replles match:

S leaderless SMR (e.g. epaxos)

- replica R receives command |
- forwards it to a quorum |
- quorum replies

- if all replies match:]

- R commits the command '%'
| b'.'

- else:
- R contacts quorum again
- quorum replies
- R commits the command |

e leaderless SMR (e.g. epaxos)

- replica R receives command
- forwards it to a quorum
- quorum replies

- if all replies match: fast path

- R commits the command) 4
| &

(
c’
|
|

A

- else:
- R contacts quorum again
- quorum replies
- R commits the command

e leaderless SMR (e.g. epaxos)

- replica R receives command
- forwards it to a quorum

-]

- quorum replies .

(
c’
|
|

- if all replies match: fatpath

= R commits the command jta)

L)
’

A

- else:
- R contacts quorum again
- quorum replies
- R commits the command

—
- replica R receives command
- forwards it to a quorum

-]

- quorum replies

- if all replies match: fast path

- R commits the command) 4
| &

leaderless SMR (e.g. epaxos)

A

- else:
- R contacts_ quorum again
- quorum replies
- R commits the command

leaderless SMR advantages

v
fairer latency
distribution

leaderless SMR advantages

v
fairer latency
distribution

<¥ J& 1 coordinator

leaderless SMR advantages

v
fairer latency
distribution

<¥ J& 1 coordinator

¢

leaderless SMR advantages

v
fairer latency
distribution

v/

load balancing

leaderless SMR advantages

v
fairer latency
distribution
v/

load balancing
higher availability

leaderless SMR advantages

v
fairer latency
distribution
v/

load balancing
higher availability

leaderless SMR advantages

v
fairer latency
distribution
v/

load balancing
higher availability

X

leader-based SMR

unfairness/high latency
for faraway clients

X

no load balancing

X

single point of failure

leaderless SMR

fairer latency
distribution

v/

load balancing

v/

higher availability

leader-based SMR

unfairness/high latency
for faraway clients

X

no load balancing

X

single point of failure

X leaderless SMR

fairer latency
distribution

v/

load balancing

v/

higher availability

partial replication ->
higher scalability

X

leader-based SMR

unfairness/high latency
for faraway clients

X

no load balancing

X

single point of failure

leaderless SMR

fairer latency
distribution
v

load balancing

v/

higher availability

partial replication ->
higher scalability

why haven’t
leaderless protocols

been adopted by industry

leader-based SMR

unfairness/high latency
for faraway clients

X

no load balancing

X

single point of failure

distribution

v/

load balancing

v/

higher availability

partial replication ->
higher scalability

why haven’t
leaderless protocols

» been adopted by industry

can leaderless SMR
be practical for

‘ planet-scale systems?

can leaderless SMR
be practical for

planet-scale systems?

low latency

simple recovery

predictable performance

can leaderless SMR
be practical for
planet-scale systems?

low latency
simple recovery
predictable performance

a nhote on commutativity

- leaderless protocols typically exploit the fact that commands frequently commute

- and when they do, commands don’t have to be ordered (improving performance)

a nhote on commutativity

- leaderless protocols typically exploit the fact that commands frequently commute

- and when they do, commands don’t have to be ordered (improving performance)

we say that commands conflict

when they do not commute

low latency - SMR protocols

small quorums single round-trip

10

epaxos

low latency - SMR protocols

small quorums single round-trip

f+1

10

epaxos

low latency - SMR protocols

small quorums single round-trip

10

ep

2

N e o

aX0sS

low latency - SMR protocols

small quorums single round-trip

f is always minority :(|

10

low latency - bounds on failures

- existing leaderless protocols assume a minority for f (e.g. =3 out of r=7)

11

low latency - bounds on failures

- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

11

low latency - bounds on failures

- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare

11

low latency - bounds on failures

- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare

- we ran a link-monitoring experiment on Google Cloud Platform
- 17 DCs where each DC periodically pings the remaining DCs

| <]

11

low latency - bounds on failures

- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare

- we ran a link-monitoring experiment on Google Cloud Platform
- 17 DCs where each DC periodically pings the remaining DCs
- after 3 months, we searched for concurrent link slowdowns
- they were always incidentto 1 DC

XA I>I<I

11

low latency - bounds on failures

- existing leaderless protocols assume a minority for f (e.g. f=3 out of r=7)

- concurrent data center (DC) failures are rare
- concurrent network failures are also rare A
- we ran a link-monitoring experiment on Google Cloud Platform ¥ f=1 or f=2
- 17 DCs where each DC periodically pings the remaining DCs Is acceptable
- after 3 months, we searched for concurrent link slowdowns - *
- they were always incidentto 1 DC

XX I>I<I

| always thls!

11

epaxos

low latenc

small quorums

- SMR protocols

single round-trip

12

ep

dXO0S

~ I

»/’ . Sriipeiai A |
i small for small §
"“ <

e

| valuesoff §

low latency - SMR protocols

small quorums single round-trip

f+1
3r/4

r/2+

r/2+

12

low latency - SMR protocols

small quorums single round-trip

o]
XIEZ1

epaxos

| small for small §

| valuesoff |

N ——

epaxos

| small for small §

¥

_J

N ——

| valuesoff |

low latency - SMR protocols

small quorums single round-trip

only from the

o

only if replies

X EZ
Q r/2+f

12

epaxos

—

¥

—

N

| small for small §
| valuesoff &

low latency - SMR protocols

small quorums single round-trip

only from the

o
only if replies

X EZ
Q r/2+f

flexible fast-path condition!

12

low latency - flexible fast path condition

fast path condition: each conflict was reported by at least f processes

13

low latency - flexible fast path condition

fast path condition: each conflict was reported by at least f processes

{a, b, c}
2

// {a,b, d}

{aj 1 — 3
M
4

{a,c,d}

D

v/ Atlas f =2
X matching replies

(a)

13

low latency - flexible fast path condition

fast path condition: each conflict was reported by at least f processes

{a, b, c} %
2
/,2 {a,b,d} T >
{a}{ 1 <\»§ @ (1 <\»§
N N
4 5 4 S
{a,c d} {b}
v/ Atlas f =2 X Atlas f =2

(@) (b)

X matching replies X matching replies

13

low latency - flexible fast path condition

fast path condition: each conflict was reported by at least f processes

{a, b, c}
2

/’) {a, b, d}

{a} lér«\%?

(a)

N

{a,c,d}

D

v/ Atlas f =2
X matching replies

%,
2

// 2,

@ 1 > 3
N

4

(b

X Atlas f =2
X matching replies

D

(b)

b reported

13

low latency - flexible fast path condition

fast path condition: each conflict was reported by at least f processes

{a,b, c} %
2 2

_—">" {ab,d} "

_ %,
f(1 el 0 (1)——(3

(a)

N N
4 5 4
(a.c.d) (b}

v/ Atlas f =2 X Atlas f =2
X matching replies X matching replies

epaxos would take the slow path in both examples

D

(b)

rerorsd oy)

13

low latency - flexible fast path condition

fast path condition: each conflict was reported by at least f processes

{a,b, c} %
2 2
_—~—>" {a,b.,d} —

{a} 1(7 - 3 % 1(7 _ - ?
N N
4 4

) 5

{a,c,d} (b}
o) Y Atlasf=2) XAt1as f=2 breporiedony)
X matching replies X matching replies |by 1<f process |

commit commit

dep ={a, b, c, d} dep = {b}

epaxos would take the slow path in both examples 13

command execution

“l
i)
!
\

committed dependencies (and arbitration)
determine command execution order

i epaxos |
|
| introduced §
this idea §

14

command execution

dep[a] ={}
dep[b] ={a, c}
dep[c] ={a, b}

|
(!
i)
\
{0

committed dependencies (and arbitration)
determine command execution order

i epaxos |
|
| introduced §
this idea §

14

command execution

dep[a] ={}
dep[b] ={a, c}
dep[c] ={a, b}

|
(!
i)
\
{0

committed dependencies (and arbitration)
determine command execution order

i epaxos |
|
| introduced §
this idea §

14

command execution

dep[a] ={}
dep[b] ={a, c}
dep[c] ={a, b}

|
(!
i)
\
{0

1. execute(a) ;
2. execute(a) ;

committed dependencies (and arbitration)
determine command execution order

i epaxos |
|
| introduced §
this idea §

14

command execution

dep[a] ={}
dep[b] ={a, c}
dep[c] ={a, b}

]
(!
i)
\
‘\\

1. execute(a) ; execute(b) ; execute(c) ifb<c
2. execute(a) ; execute(c) ; execute(b) ifb>c

committed dependencies (and arbitration)
determine command execution order

i epaxos
- ~
| introduced §
this idea §

14

can leaderless SMR
be practical for
planet-scale systems?

low latency

predictable performance

’ B L he 2.4 - 0
g
e 220 i
| W et
oS »
Simpie recovery
-
A
~
3
2
TSR B

15

can leaderless SMR
be practical for

planet-scale systems?

low latency

predictable performance

simple recovery ter

15

simple recovery

- when a command is submitted, the coordinator fixes the fast quorum
- recovery procedure reconstructs the committed value from within the fast quorum

- epaxos tries to recover from any quorum, which makes recovery very complex

16

can leaderless SMR
be practical for

planet-scale systems?

low latency

predictable performance

simple recovery ter

17

can leaderless SMR
be practical for

planet-scale systems?

low Iatency

predictable performance

sim p le recovery

17

d lack of predictable performance
ol [a e
al o |d

p1 p2 p3

command arrival order

77 o : | | o § - 7) - : e iy] v u e — e —— - -

&
epaxos

lack of predictable performance

al [c
a| |c| |d| [2commandsbutb ;
p1 p2 p3

|
command arrival order

= - e s s— e —— L . - — S e

epaxos

18

3 lack of predictable performance

b |a] el
al ¢/ |d| (@!commandsbutp |
p1 p2 p3

command arrival order

— —— — — — _ R T — e ———i —

—» “depends on”

epaxos

3 lack of predictable performance

a

c| [d] (@ commands butb

il

|
?'

p1 p2 p3

command arrival order

e —— — S—— — - —— . — — —— — —— == -—

command arrival order

d|
bl

a

|

b1

2| e

c| |d

p2 p3

_ _

lack of predictable performance

lall commands but b are committed {

&)
eanOS | ——————————

| theory: don’t terminate 14
- practice: high tail latency |

18

3 lack of predictable performance

o @
a o a

p1 p2 p3

command arrival order

— = ——— E—— - == . — — —— — —— — _

| practice: high tail latency

- fast quorum processes propose a
timestamp for the command

timestamping

19

- fast quorum processes propose a

|

i
|

timestamp for the command

- the committed timestamp is the
highest proposal

— e ———— — = —— — D—— = -

timestamping

19

- fast quorum processes propose a
timestamp for the command

' - the committed timestamp is the
| highest proposal

- commands are executed in

. timestamp order

|

i.. . _

timestamping

19

timestamping

- fast quorum processes propose a o 4
timestamp for the command cEL

|- the committed timestamp is the Q. S 3

} highest proposal 1‘ f 0

- commands are executed in ” §

| timestamp order | 1

pT p2 p3
Processes

- fast quorum processes propose a

timestamp for the command

= the committed timestamp is the
} highest proposal

- commands are executed in
- timestamp order

|

\

e e ——————

timestamps

timestamping

19

- fast quorum processes propose a

timestamp for the command

= the committed timestamp is the
} highest proposal

- commands are executed in
- timestamp order

|

\

e e ——————

timestamps

timestamping

19

- fast quorum processes propose a

timestamp for the command

= the committed timestamp is the
} highest proposal

- commands are executed in
- timestamp order

|

\

e e ——————

timestamps

timestamping

19

timestamping

- fast quorum processes propose a

timestamp for the command .

= the committed timestamp is the \
} highest proposal {

| |

timestamps

- commands are executed in |
. timestamp order |

|

|)

\

Processes

ts[a] = 1| | ts[b] = 2

'\K‘-;—— = — - o - e =

= = =

question: when is it safe to execute a
committed command?

|

command execution

— —

—_—— = i — P— - = = — —_— —

a process can only execute a command commltted W|th ‘
tlmestamp t once |t knows all proposals up to t by any majorlty 1

B— pu— — S —— e . —_—

e —— p———
—_—— e —— e —— e e ———— _ — — D - — - — — e — — —

20

|

command execution

__ _ _ — S — —
——— — — = I —
—— — R S
— . ——

—_—— pm—— — P— - = — — S

a process can only execute a command commltted W|th ‘
tlmestamp t once |t knows all proposals up to t by any majorlty 1

— pm— Pom—— — S —— e . —_—

P e ————
—_———— e - —— — —_—— ——— S
e e ———— e st — e — _ — — ————

20

|

command execution

__ _ — S — —

——— — — = - —
—— —_— -

——— e e

—_—— = — — S __ ____ - = — —_— S

a process can only execute a command commltted W|th
tlmestamp t once |t knows all proposals up to t by any majorlty 1

B— pm— Pom—— — S —— e . —_—

e
—_—— S—— — e —_— — —_— ———
e ———— e ———— = — = — — B — _ I —

20

|

|
’a process can only execute a command committed with *

command execution

_ _ _ —— — S— —
—— — — — I —
_ S pE— S— _ -
—— e ——— - — —— - _— —— — e
—_—— —_— . _ — S e = ———— —_— ——— — \

tlmestamp t once |t knows all proposals up to t by any majorlty 1

—— — — —— pm— P—— e —
—— e e —————— e e ——— e —— e —— —‘.@ —_— — —_— ——————— I - —

.‘execute(b) execute(c)
since b<c |

'

20

3l predictable performance

al |c| |d (@!commandsbutb ‘

|

e e — o g—— =

p1 p2 p3

command arrival order

e — — T e m— =_——— = e = = e e ol =—= — e —— —_—

theory: don’t terminate 14
- practice: high tail latency |

21

predictable performance

c
a C d
p1 p2 p3

command arrival order

a—»c—>d—»

&
processes epaxos —————

timestamps

|
d‘;

| theory: don’t terminate 1
practice: high tail latency |

P e ————

21

a C d
p1 p2 p3

command arrival order

timestamps

_vhave aII proposals up to 2 by a majorlty, “
S0 tempo executes & and c j’

predictable performance

a—»c—>d—»

—» “depends on”

& »‘{ .
epaxos "

21

predictable / superior performance

parallelism:

- timestamping & command execution are fully decentralized & parallel

22

predictable / superior performance

parallelism:

scale
vertically

- timestamping & command execution are fully decentralized & parallel

22

predictable / superior performance

e

parallelism:

scale
vertically

- tlmestamplng & command execution are fully decentralized & parallel

(' e ‘ === “\
in epaxos & atlas, command execution is sequentlaI" |

N—— — e —— e I

predictable / superior performance

e

parallelism:

scale
vertically

- timestamping & command execution are fuIIy decentralized & parallel

—~ - — - _— _ S N s — T ———
— = e ——

(' _— e — —— e

=
in epaxos & atlas, command executlon is sequentlaI" |

\ e e e

—_— —_— — o —

partial replication:

- the protocol easily generalizes to this setting

22

can leaderless SMR
be practical for

planet-scale systems?

low Iatency

predictable performance

simp I e recovery

23

can leaderless SMR
be practical for

planet-scale systems?

low Iatency

predictable performance

simp I e recovery

23

evaluation
protocols considered:
- (flexible) paxos
- epaxos
- Cdesar (notin this presentation)

- janus (not in this presentation)

evaluation

protocols considered: 0 fantoch (Pubic)

- (ﬂeX|b|e) anOS framework for evaluating (planet-scale)

consensus protocols
eanOS Rust 1’:? 101 Qx? 10

- Cdesar (notin this presentation)

. o | github.com/vitorenesduarte/fantoch
=]JaNUus (not in this presentation)

protocols considered:
- (flexible) paxos
- epaxos
- Cdesar (notin this presentation)

- janus (not in this presentation)

focus on predictable performance:
- throughput

- talil latency

evaluation

[fantoch (Public)

framework for evaluating (planet-scale)
consensus protocols

Rust 1’:?101 ?3910

github.com/vitorenesduarte/fantoch

24

throughput

Tempof=1 == Atlasf=1 =—+= FPaxosf=1 Caesar”
r=95 —&— Tempof=2 —#-= Atlasf=2 —¥— FPaxosf=2
clients per replica: 32 -> 20k 1500 17—
S 950
» 6004
o 390 -
=
= 250 -
?_,_é 160 - | right is better
1001+ . . . _— |
0 50 100 150 200
1500 T
S 950 Pl
3 _ :ﬁi I
ic? 600 - 'f--t’)L | ‘b
- 390 - o—7-ot "
E -
~ 2504 M—x—x [
O ,
T 160] eeme=fe
(S
100 +— | . . .
0 50 100 150 200

throughput (K ops/s)

25

r=5 —h—

clients per replica: 32 -> 20k 1500 17—
950 !
6001

390
250
160

100

1500
950

000
390
250
160

100

latency (ms) [log-scale]

latency (ms) [log-scale]

throughput

Tempof=1 == Atlasf=1 =—+= FPaxosf=1 Caesar”
Tempof=2 =#®-= Atlasf=2 == FPaxosf=2

! H

fy
1 m-‘b 1
| |
| . L

100

0 50 100 150 200
throughput (K ops/s)

25

r=5

clients per replica: 32 -> 20k

53K

53K

throughput

Tempof=1 == Atlasf=1 =—+= FPaxosf=1 Caesar”
—h— Tempof=2 —#- Atlasf=2 —*— FPaxosf=2

1500 1=
950,'
600 1

390 -
250 -
160 -

latency (ms) [log-scale]

b ‘
[_ N

100

0 50 100 150 200

1500
950 -

000 -
390 -
250 -
160 -

latency (ms) [log-scale]

100

0 50 100 150 200
throughput (K ops/s) 25

r=5

clients per replica: 32 -> 20k

53K 53K

throughput

Tempof=1 == Atlasf=1 =—+= FPaxosf=1 Caesar”
—h— Tempof=2 —#- Atlasf=2 —*— FPaxosf=2

1500 1=
950,'
600 1

390 -
250 -
160 -

latency (ms) [log-scale]

b ‘
[_ N

100

0 50 100 150 200

1500
950 -

000 -
390 -
250 -
160 -

latency (ms) [log-scale]

100

0 50 100 150 200
throughput (K ops/s) 25

r=5

clients per replica: 32 -> 20k

53K 53K

throughput

Tempof=1 == Atlasf=1 =—+= FPaxosf=1 Caesar”
—h— Tempof=2 —#- Atlasf=2 —*— FPaxosf=2

1500 1=
950,'
600 1

390 -
250 -
160 -

latency (ms) [log-scale]

b ‘
[_ N

100

0 50 100 150 200

1500
950 -

000 -
390 -
250 -
160 -

latency (ms) [log-scale]

100

0 50 100 150 200
throughput (K ops/s) 25

r=5

clients per replica: 32 -> 20k

53K 53K

throughput

Tempof=1 == Atlasf=1 =—+= FPaxosf=1 Caesar”
—h— Tempof=2 —#- Atlasf=2 —*— FPaxosf=2

390 -
250 -
160 -

latency (ms) [log-scale]

1500
950 '
600

b ‘
[_ N

100

100

1500
950 -

000 -
390 -
250 -
160 -

latency (ms) [log-scale]

100

0 50 100 150 200
throughput (K ops/s) 25

throughput

Tempof=1 == Atlasf=1 =—+= FPaxosf=1 Caesar”
r=95 —h— Tempof=2 —#- Atlasf=2 —%— FPaxosf=2
clients per replica: 32 -> 20k 1500
S 950 '
P |
& 600 {
= 250 -
% 160 - right is betterf
atesr1 R E oLl , , g
@
g 930 -
D
& 600 -
o 390 -
&
= 250 -
=
@ 160 -
S
100 +— | . . .
0 50 100 150 200

throughput (K ops/s) 25

throughput

Tempof=1 == Atlasf=1 =—+= FPaxosf=1 Caesar”
r=95 —h— Tempof=2 —#~—- Atlasf=2 —— FPaxosf=2

clients per replica: 32 -> 20k 1500

S 950 '

v} | —

& 6004

= 250 -

?_,_é 160 - : right is better]
PR oc s E ol , , e
m 000K 230K 1500 0 \ 50 100 150 200

S 950 -

v}

& 600 -

o 390

&

= 250 -

=

@ 160 -

S

100 +— .

0 50 100 150 200
throughput (K ops/s) 25

r=295
2% conflicts

99.99

©
O
o

97.0

percentiles

95.0
99.99
99.0

97.0

percentiles

95.0

100

tail latency

Tempof=1 =@&- Atlasf=1
—&— Tempof=2 —m- Atlasf =2

550 1200 2800
latency (ms) [log-scale]

Ca

esar

¢ - EPaxos

| left is better

6500

15000

26

r=295
2% conflicts

99.99

©
O
o

97.0

percentiles

95.0
99.99
99.0

97.0

percentiles

95.0

100

tail latency

Tempof=1 =@&- Atlasf=1
—d— Tempof=2 —m- Atlasf =2 --@- EPaxos

| left is better

Ca

esar

. 256 clients per replica)

\ e —— —— e — ——

| 512clients per replica)

\\A___; —— = — ——

550 1200 2800
latency (ms) [log-scale]

6500

15000

26

tail latency

Tempof=1 =e- Atlasf=1 Caesar
2% contlicts —4— Tempof=2 ~-®- Atlasf=2 --¢- EPaxos

99.99

| left is better |

o 99.0 Te— |

=
]
256 | 512 [

95.0

epaxos 1.7s 3.1s ﬁ 99.0
=

O 97.0
]
Q.

95.0
100 230 550 1200 2800 6500 15000

latency (ms) [log-scale]

26

tail latency

Tempof=1 =e- Atlasf=1 Caesar
2% contlicts —4— Tempof=2 ~-®- Atlasf=2 --¢- EPaxos

99.99

ot s better]

o 99.0 Te— |

=
]
256 | 512 [

95.0

epaxos 1.7s 3.1s ﬁ 99.0
=

O 97.0
]
Q.

95.0
100 230 550 1200 2800 6500 15000

latency (ms) [log-scale]

26

tail latency

Tempof=1 =e- Atlasf=1 Caesar
2% contlicts —4— Tempof=2 ~-®- Atlasf=2 --¢- EPaxos

99.99

ot s better]

o 99.0 Te— |

=
]
256 | 512 [

95.0

epaxos 1.7s 3.1s ﬁ 99.0
=

O 97.0
]
Q.

95.0
100 230 550 1200 2800 6500 15000

latency (ms) [log-scale]

26

tail latency

Tempof=1 =e- Atlasf=1 Caesar
2% contlicts —4— Tempof=2 ~-®- Atlasf=2 --¢- EPaxos

99.99

ot s better]

o 99.0 Te— |

=
O
256 512

95.0

epaxos 1.7s 3.1s ﬁ 99.0
354ms 367ms S

o 97.0
]
Q.

95.0
100 230 550 1200 2800 6500 15000

latency (ms) [log-scale]

26

tail latency

Tempof=1 =e- Atlasf=1 Caesar
2% contlicts —4— Tempof=2 ~-®- Atlasf=2 --¢- EPaxos

99.99

ot s better]

o 99.0 Te— |

=
O
256 512

95.0

epaxos 1.7s 3.1s ﬁ 99.0
354ms 367ms S

o 97.0
]
Q.

95.0
100 230 550 1200 2800 6500 15000

latency (ms) [log-scale]

26

summary

- atlas & tempo are the first leaderless protocols parameterized by f

- small fast quorums: the protocols trade off higher fault tolerance for
lower latency

27

summary

- atlas & tempo are the first leaderless protocols parameterized by f

- small fast quorums: the protocols trade off higher fault tolerance for
lower latency

- atlas & tempo fix the fast quorum, simplifying recovery

27

summary

- atlas & tempo are the first leaderless protocols parameterized by f

- small fast quorums: the protocols trade off higher fault tolerance for
lower latency

- atlas & tempo fix the fast quorum, simplifying recovery

- tempo provides predictable performance even in contended workloads

- tempo handles both full and partial replication scenarios

27

summary

- atlas & tempo are the first leaderless protocols parameterized by f

- small fast quorums: the protocols trade off higher fault tolerance for
lower latency

- atlas & tempo fix the fast quorum, simplifying recovery

- tempo provides predictable performance even in contended workloads

- tempo handles both full and partial replication scenarios

' Ieaderless protocols are becomlng practlcaI" w
cassandra will release accord, a new timestamp-based ‘f
Ieaderless protocol (like tempo) ?

N e

e —E————— e e — e —— e ——— —— —_— —_— — — — —— _— e

27

publications

State-Machine Replication for Planet-Scale Systems @ Eu rdSys’ZO

Vitor Enes, Carlos Baquero, Tuanir Franca Rezende, Alexey Gotsman, Matthieu Perrin, Pierre Sutra.

Efficient Replication via Timestamp Stability @ EuroSys’21

Vitor Enes, Carlos Baquero, Alexey Gotsman, Pierre Sutra.

28

publications
& acknowledgments

State-Machine Replication for Planet-Scale Systems @ Eu rSys’ZO

Vitor Enes, Carlos Baquero, Tuanir Franca Rezende, Alexey Gotsman, Matthieu Perrin, Pierre Sutra.

Efficient Replication via Timestamp Stability @ EuroSys’21

Vitor Enes, Carlos Baquero, Alexey Gotsman, Pierre Sutra.

28

@
@)@ HAsLab

HIGH-ASSURANCE
SOFTWARE LABORATORY

publications
& acknowledgments

State-Machine Replication for Planet-Scale Systems @ EuroSys’20

Vitor Enes, Carlos Baquero, Tuanir Franca Rezende, Alexey Gotsman, Matthieu Perrin, Pierre Sutra.

Efficient Replication via Timestamp Stability @ EuroSys’21

Vitor Enes, Carlos Baquero, Alexey Gotsman, Pierre Sutra.

28

