
efficient synchronization
of state-based CRDTs

Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, João Leitão

9 Apr. 2019 @ ICDE’19

 2

CRDTs
Conflict-free Replicated Data Types

 2

CRDTs
Conflict-free Replicated Data Types

rich abstraction
- register, counter, set, map, …

 2

CRDTs
Conflict-free Replicated Data Types

rich abstraction
- register, counter, set, map, …

- quality of service
why replicate?

 2

CRDTs
Conflict-free Replicated Data Types

rich abstraction
- register, counter, set, map, …

- quality of service
why replicate?

 2

CRDTs
Conflict-free Replicated Data Types

rich abstraction
- register, counter, set, map, …

- quality of service
why replicate?

 2

CRDTs
Conflict-free Replicated Data Types

rich abstraction
- register, counter, set, map, …

- quality of service
why replicate?

no conflicts?!

- automatic conflict resolution
- eventual consistency

outline

!3

- CRDT variants

- operation-based

- state-based

• delta-based

outline

!3

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

outline

!3

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

- solution

- decomposition; filter; join

outline

!3

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

- solution

- decomposition; filter; join

outline

!3

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

- solution

- decomposition; filter; join

outline

!3

DECOMPOSITION

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

- solution

- decomposition; filter; join

outline

!3

DECOMPOSITION FILTER

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

- solution

- decomposition; filter; join

outline

!3

DECOMPOSITION FILTER JOIN

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

- solution

- decomposition; filter; join

outline

!3

- decomposition of state-based CRDTs

DECOMPOSITION FILTER JOIN

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

- solution

- decomposition; filter; join

outline

!3

- decomposition of state-based CRDTs

- results

DECOMPOSITION FILTER JOIN

- CRDT variants

- operation-based

- state-based

• delta-based

- problem with delta-based: naive delta propagation

- filter

- solution

- decomposition; filter; join

outline

!3

- decomposition of state-based CRDTs

- results

- summary

DECOMPOSITION FILTER JOIN

!4

CRDT variants

operation-based state-based delta-based

middleware

guarantees

exactly-once

causal
— —

payload operation full state delta

!4

CRDT variants

operation-based state-based delta-based

middleware

guarantees

exactly-once

causal
— —

payload operation full state delta

!4

CRDT variants

operation-based state-based delta-based

middleware

guarantees

exactly-once

causal
— —

payload operation full state delta

!4

CRDT variants

operation-based state-based delta-based

middleware

guarantees

exactly-once

causal
— —

payload operation full state delta

!4

CRDT variants

operation-based state-based delta-based

middleware

guarantees

exactly-once

causal
— —

payload operation full state delta

!4

CRDT variants

operation-based state-based delta-based

middleware

guarantees

exactly-once

causal
— —

payload operation full state delta

!4

CRDT variants

operation-based state-based delta-based

middleware

guarantees

exactly-once

causal
— —

payload operation full state delta

!4

CRDT variants

operation-based state-based delta-based

middleware

guarantees

exactly-once

causal
— —

payload operation full state delta

DELTA

BEST OF BOTH WORLDS!

!5

in reality…
BANDWIDTH

(as bad as state-based)

b
e
st

!5

in reality…
BANDWIDTH

(as bad as state-based)

b
e
st

CPU
(worse than state-based)

overhead

b
e
st

!6

main contribution

achieve delta-based true potential
through careful delta propagation

!7

state-based CRDTs
- simplest example: set

subset set union

!7

state-based CRDTs
- simplest example: set

subset set union

!7

state-based CRDTs
- simplest example: set

FILTER JOIN

subset set union

!7

state-based CRDTs
- simplest example: set

FILTER JOIN

- state-based: mutators (m) inflate local state

- delta-based: delta-mutators (dm) return deltas

subset set union
> add c to the set {a, b}

!7

state-based CRDTs
- simplest example: set

FILTER JOIN

- state-based: mutators (m) inflate local state

- delta-based: delta-mutators (dm) return deltas

subset set union
> add c to the set {a, b}

!7

state-based CRDTs
- simplest example: set

FILTER JOIN

- state-based: mutators (m) inflate local state

- delta-based: delta-mutators (dm) return deltas

m({a, b}) = {a, b, c}

subset set union
> add c to the set {a, b}

!7

state-based CRDTs
- simplest example: set

FILTER JOIN

- state-based: mutators (m) inflate local state

- delta-based: delta-mutators (dm) return deltas

m({a, b}) = {a, b, c}

dm({a, b}) = {c}

subset set union
> add c to the set {a, b}

!7

state-based CRDTs
- simplest example: set

FILTER JOIN

- state-based: mutators (m) inflate local state

- delta-based: delta-mutators (dm) return deltas

1. joined with local state
2. added to a delta-buffer (to be propagated)

m({a, b}) = {a, b, c}

dm({a, b}) = {c}

!8

delta-buffer notation

!8

delta-buffer notation

{ } CRDT state

!8

delta-buffer notation

{ } CRDT state

[] delta-buffer

!9

delta-buffer

A

{ }

[]

B

C

D

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

B

C

D

add x

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

B

C

D

add x

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

B

C

{x}

D

add x

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

B

C

{x}

[{x}]

{x}

D

add x

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

B

C

{x}

[{x}]

{x}

D

{x}

add x

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

B

C

{x}

[{x}]

{x}

D

{x}

[{x}]

{x}

add x

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

B

C

{x}

[{x}]

{x}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

C

{x}

[{x}]

{x}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

C

{x, y}

{x}

[{x}]

{x}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x} {x, y}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x} {x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C filters received {x, y}

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C filters received {x, y}

= is there something new?

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C filters received {x, y}

= is there something new?

=

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C filters received {x, y}

= is there something new?

=

SOLUTION:
 decomposition; filter; join

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C filters received {x, y}

= is there something new?

=

SOLUTION:
 decomposition; filter; join

= select what’s new

!9

delta-buffer

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

D

{x}

[{x}]

{x}

{x, y}

[{x}, {x, y}]

{x, y}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C filters received {x, y}

= is there something new?

=

SOLUTION:
 decomposition; filter; join

= select what’s new

=

!10

decomposition
- example:

!10

decomposition

- S is a decomposition of x if:

- example:

!10

decomposition

- S is a decomposition of x if:

- example:

1. join of S gives x

!10

decomposition

- S is a decomposition of x if:

- example:

1. join of S gives x

 2. no element is redundant

!10

decomposition

- S is a decomposition of x if:

- example:

1. join of S gives x

3. every element is irreducible

 2. no element is redundant

!10

decomposition

- S is a decomposition of x if:

- example:

1. join of S gives x

3. every element is irreducible

 2. no element is redundant

!10

decomposition

- S is a decomposition of x if:

- example:

1. join of S gives x

3. every element is irreducible

 2. no element is redundant

!11

decomposition; filter; join
= difference

!11

decomposition; filter; join
= difference - example:

!11

decomposition; filter; join
= difference - example:

!11

decomposition; filter; join
= difference - example:

!11

decomposition; filter; join
= difference - example:

!11

decomposition; filter; join
= difference - example:

DECOMPOSITION

!11

decomposition; filter; join
= difference - example:

DECOMPOSITION FILTER

!11

decomposition; filter; join
= difference - example:

DECOMPOSITION FILTER

JOIN

!12

delta-buffer (RR)

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x} {x, y}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

!12

delta-buffer (RR)

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x} {x, y}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C removes redundant
state in received {x, y}

=

!12

delta-buffer (RR)

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x} {x, y}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C removes redundant
state in received {x, y}

=

{x, y}

[{x}, {y}]

!12

delta-buffer (RR)

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x} {x, y}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C removes redundant
state in received {x, y}

=

{x, y}

[{x}, {y}]

{x, y}

[{x}, {y}]

{y}

!12

delta-buffer (RR)

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x} {x, y}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C removes redundant
state in received {x, y}

=

{x, y}

[{x}, {y}]

{x, y}

[{x}, {y}]

{y}

!12

delta-buffer (RR)

A

{ }

[]

{x}

[{x}]

{x, y}

[{x}, {y}]

B

{x, y}

[{x, y}]

C

{x, y}

{x}

[{x}]

{x} {x, y}

D

{x}

[{x}]

{x}

add x add y

{ }

[]

{ }

[]

{ }

[]

1

1 C removes redundant
state in received {x, y}

=

{x, y}

[{x}, {y}]

{x, y}

[{x}, {y}]

{y}

A

C B

{x} {x}

{x}

CYCLE FOUND!

!13

delta-buffer (BP)

A

{ }

[]

B

{ }

[]

{x}

[{x}]

add x

!13

delta-buffer (BP)

A

{ }

[]

B

{x}

[{x}]

{x}

{ }

[]

{x}

[{x}]

add x

!13

delta-buffer (BP)

A

{ }

[]

B

{x}

[{x}]

{x}

{ }

[]

{x}

[{x}]

add x

{x}

[{x}]

{x}

!13

delta-buffer (BP)

A

{ }

[]

B

{x}

[{x}]

{x}

{ }

[]

{x}

[{x}]

add x

{x}

[{x}]

{x}

1 B should avoid back-propagation of {x}

1

!13

delta-buffer (BP)

A

{ }

[]

B

{x}

[{x}]

{x}

{ }

[]

{x}

[{x}]

add x

{x}

[{x}]

{x}

1 B should avoid back-propagation of {x}

1

!14

CRDT set micro-benchmark
- test the effect of cycles in the network topology:

!14

CRDT set micro-benchmark
- test the effect of cycles in the network topology:

tree partial-mesh

!15

CRDT set micro-benchmark

b
e

s
t

b
e

s
t

!15

CRDT set micro-benchmark

classic delta-based is as bad
as state-based

b
e

s
t

b
e

s
t

!15

CRDT set micro-benchmark

classic delta-based is as bad
as state-based

BP is enough if no cycles
RR needed in the general case

b
e

s
t

b
e

s
t

!16

but sets are easy…

!16

but sets are easy…

for each CRDT composition technique,
there is a decomposition rule

!16

but sets are easy…

for each CRDT composition technique,
there is a decomposition rule

!17

more results in the paper
- counter and map micro-benchmark

- comparison with:

- operation-based CRDTs

- scuttlebutt and scuttlebutt variant

- retwis benchmark

!17

more results in the paper
- counter and map micro-benchmark

- comparison with:

- operation-based CRDTs

- scuttlebutt and scuttlebutt variant

- retwis benchmark

- optimal delta-mutators

- state-based CRDTs are distributive lattices

- (not simply join-semilattices)

!18

summary

!18

summary
- identified inefficiencies in delta propagation

!18

summary
- identified inefficiencies in delta propagation

- introduced concept of decomposition of state-based CRDTs

- difference (Δ) between two states

!18

summary
- identified inefficiencies in delta propagation

- introduced concept of decomposition of state-based CRDTs

- difference (Δ) between two states

- proposed BP and RR optimizations

- BP is enough in acyclic topologies

- RR is needed in the more general case

efficient synchronization
of state-based CRDTs

Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, João Leitão

vitorenes.org

@vitorenesduarte

9 Apr. 2019 @ ICDE’19

