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rich abstraction
- register, counter, set, map, ...

why replicate?
- quality of service

no conflicts?!
- eventual consistency

- automatic conflict resolution
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BEST OF BOTH WORLDS!
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1. joined with local state
2. added to a delta-buffer (to be propagated)
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- example:

decomposition

decomposition({a, b, }) = {{a}, {0}, {e}} = ¥ {a,b, ]

- S is a decomposition of x if:

1. Jjoin of S gives X

2. No element is redundant

X S1=11by,1cr}
X So = {{CL, b}v ﬂ_)iv {C}}

3. every elementisirreducible X S3 = {{a,b},{c}}

v 54 = {{a}a {b}7 {C}}
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ce C: Jc={c}
(a,by e A x B: |{a,b) =ax {L}U{L} x|b
(c,a) e CK A: [[{c,a) = {c x |a
Leftac A® B: || Lefta = {Leftv | v € |a}
Rightbe A @ B: || Rightb = {Rightv | v € ||b}
feU=A: |Jf = {k — v | k€ dom(f) Avelf(v)}

for each CRDT composition technique,
there is a decomposition rule
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counter and map micro-benchmark
comparison with:

- operation-based CRDTs

- scuttlebutt and scuttlebutt variant
retwis benchmark

optimal delta-mutators
state-based CRDTs are distributive lattices
- (not simply join-semilattices)
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summary

- identified inefficiencies in delta propagation

- introduced concept of decomposition of state-based CRDTs
- difference (A) between two states

- proposed BP and RR optimizations
- BP Is enough in acyclic topologies
- RR Is needed In the more general case
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