efficient synchronization
of state-based CRDTs

Vitor Enes, Paulo Sérgio Almeida, Carlos Baguero, Jodo Leitao
9 Apr. 2019 @ ICDE’'19

CRDTs
Conflict-free Replicated Data Types

CRDTs
Conflict-free Replicated Data

rich abstraction
- register, counter, set, map, ...

CRDTs
Conflict-free Replicated Data

rich abstraction
- register, counter, set, map, ...

why replicate?
- quality of service

CRDTs
Conflict-free Replicated Data Types

rich abstraction
- register, counter, set, map, ...

why replicate?
- quality of service

CRDTs
Conflict-free Replicated Data Types

rich abstraction
- register, counter, set, map, ...

why replicate?
- quality of service

CRDTs

rich abstraction
- register, counter, set, map, ...

why replicate?
- quality of service

no conflicts?!
- eventual consistency

- automatic conflict resolution

outline

outline

- CRDT variants
- operation-based
- state-based
. delta-based

outline

- CRDT variants
- operation-based
- state-based
. delta-based
- problem with delta-based: naive delta propagation
- filter

outline

- CRDT variants
- operation-based
- state-based
. delta-based
- problem with delta-based: naive delta propagation
- filter
- solution
- decomposition; filter; join

- CRDT variants
- operation-based
- state-based
. delta-based \
- problem with delta-based: naive delta propagation
- filter
- solution
- decomposition; filter; join

- CRDT variants
- operation-based
- state-based
. delta-based \
- problem with delta-based: naive delta propagation
- filter
- solution
- decomposition; filter; join

- CRDT variants
- operation-based
- state-based
. delta-based \
- problem with delta-based: naive delta propagation
- filter
- solution
- decomposition; filter; join

- CRDT variants
- operation-based
- state-based
. delta-based \
- problem with delta-based: naive delta propagation
- filter
- solution
- decomposition; filter; join

- CRDT variants
- operation-based
- state-based
. delta-based \
- problem with delta-based: naive delta propagation
- filter
- solution
- decomposition; filter; join
- decomposition of state-based CRDTs

- CRDT variants
- operation-based
- state-based
. delta-based \
- problem with delta-based: naive delta propagation
- filter
- solution
- decomposition; filter; join
- decomposition of state-based CRDTs
- results

- CRDT variants
- operation-based
- state-based
. delta-based \
- problem with delta-based: naive delta propagation
- filter
- solution
- decomposition; filter; join
- decomposition of state-based CRDTs
- results
- summary

CRDT variants

operation-based state-based delta-based

middleware exactly-once
guarantees causal

payload operation full state delta

CRDT variants

operation-based state-based delta-based

middleware exactly-once Q
guarantees causal

payload operation full state delta

CRDT variants

operation-based state-based delta-based

middleware exactly-once Q
guarantees causal

payload operation Q full state delta

CRDT variants

operation-based state-based delta-based

middleware exactly-once Q Q
guarantees causal

payload operation Q full state delta

CRDT variants

operation-based state-based delta-based

middleware exactly-once Q Q
guarantees causal

payload operation Q full state Q

delta

CRDT variants

operation-based state-based delta-based

middleware exactly-once Q Q Q
guarantees causal

payload operation Q full state Q

delta

CRDT variants

operation-based state-based delta-based

middleware exactly-once
guarantees causal Q Q Q
delta Q

payload operation Q full state Q

CRDT variants

operation-based state-based delta-based

middleware exactly-once
guarantees causal Q Q Q
delta Q

payload operation Q full state Q

BEST OF BOTH WORLDS!

4

number of set elements

3000 2000

1000

0

O state-based

+ delta-based (naive)

BANDWIDTH
(as bad as state-based)
o ~
A7
“,0
w”/’4/
A
o *""ﬁ'ff:‘;—v—v—v—v—v—v
0 20 40 60
time (s)

v this paper

In reality...

BANDWIDTH
(as bad as state-based)

o
o
7= o7
e
2 P
£ A
Qo O y
e o)"‘-
- 3 A%
b Il
L _
o
o
g
E S
=
o

time (s)

O state-based - delta-based (naive) ¥ this paper

INn reality...

CPU
(worse than state-based)

T
&
3.9

O s
- s
s | Wz
n 7
£ 7|overhead
s ~ 4 U/
O
- 1
- T
Q
£ 7B
- o A
- |
o
O

state-based

delta-based (naive)
this paper

main contribution

state-based CRDTs

- simplest example: set

state-based CRDTs

- simplest example: set

5,6, U

subsety® Wset union

state-based CRDTs

- simplest example: set

5,6, U

subsety® W set union

state-based CRDTs

- simplest example: set

5,6, U

subsety® W set union

- state-based: mutators (m) inflate local state
- delta-based: delta-mutators (dm) return deltas

state-based CRDTs

- simplest example: set

A [4 £
x { >add c to the set {a, b} §

subsety® Wset union

.
L .o
. oM
B iy r R ey T A kO

. ey - T e .' o - PR . -~ - . T
B ISR D . L a - . -

- state-based: mutators (m) inflate local state
- delta-based: delta-mutators (dm) return deltas

state-based CRDTs

- simplest example: set

pe "~” -.~ \A'- ~"7.‘~ -‘:z - = " -. .j.}‘, L y '. ' . \% '.- - = - -, .-:?', L y '. ’ o
. 2 €00~ - O .»."'.‘ Ri 2 p ge o Gl or Lm € 2) Po Ao T a w o kN 9 oc ,‘- e oy Sl or -2 WA V2 S
-3 ' \
.'\ ’
7 , &
A
N o q

4 4 , ! > add c to the set {a, b} }
subset® S set union

FLTER JOIN § (@b =2, b c]

. ey - T e .' o - PR . -~ - . T
B ISR D . L a - . -

- state-based: mutators (m) inflate local state
- delta-based: delta-mutators (dm) return deltas

state-based CRDTs

- simplest example: set

y ? "~” -.~ \A'- ~"7.‘~ -‘:z - = " -. .j.}‘, L y '. ' . S '.- - = - -, .-:?', L y '. ’ <
4 Ce - o oA P S P lombs oo p o' Gl S S) 20 SA o ST A i B 2 o o G o Secr 2 to Sho o, T
.’\ ’
7 , A
A
N o J

4 4 , ! > add c to the set {a, b} }
subset® S set union

FILTER JOIN j m({a, b}) = {a, b, c}

dm({a, b}) = {c}

° ey T T T e a R P N - . =T B F2
B ISR D . L a - . -

- state-based: mutators (m) inflate local state
- delta-based: delta-mutators (dm) return deltas

state-based CRDTs

- simplest example: set

y ? "~” -.~ \A'- ~"7.‘~ -‘:z - = " -. .j.}‘, L y '. ' . S '.- - = - -, .-:?', L y '. ’ <
4 Ce - o oA P S P lombs oo p o' Gl S S) 20 SA o ST A i B 2 o o G o Secr 2 to Sho o, T
.’\ ’
7 , A
A
N o J

4 4 , ! > add c to the set {a, b} }
subset® S set union

FILTER JOIN j m({a, b}) = {a, b, c}

dm({a, b}) = {c}

° ey T T T e a R P N - . =T B F2
B ISR D . L a - . -

- state-based: mutators (m) inflate local state
- delta-based: delta-mutators (dm) return deltas

1. joined with local state
2. added to a delta-buffer (to be propagated)

delta-buffer notation

delta-buffer notation

< >
—
=—r CRDT state

delta-buffer notation

< >
—
=—r CRDT state

[] delta-buffer

delta-buffer

delta-buffer

delta-buffer

delta-buffer

delta-buffer

delta-buffer

delta-buffer

add X add y

delta-buffer

o
"
= {}

cddx, addy, delta-buffer
=x £y

O] [0, V)]

cddx, addy, delta-buffer
=x £y

0] [xd, 0

addx addy delta-buffer
— >
= {x} == (X, y}
T T ,

{X, y}
[{x, Y}]

add X add y

delta-buffer

%{} S % X, v}
... L Y
{} {x, y}
......... I VN L o 2 / | N

add X add y

delta-buffer

a T
=} = = (xV}

(<) 01

{} {X, y}
......... Ly N e YH
= - % {x, y}
LS I L o' | [}, 4 ¥ .

add X add y

delta-buffer

a T
=} = = (xV}

(<) 01

{} {X, y}
......... Ly N e YH
= - % {x, y}
LS L o | xbL &6y .
0, YN

add X add y

delta-buffer

a T
=} = = (xV}

(<) 01

{} {X, y}
......... Ly N e YH
= % {x, y}
LS I L o' | [x}, 4 ¥ .

.-«4,
—
{X1 y }

[{x}, {x, y}]

add X add y

delta-buffer

a T
=} = = (xV}

(<) 01

{} {X, y}
......... Ly N e YH
= % {x, y}
LS I L o' | [x}, 6 VM .

.-«4,
—
{X1 y }

[{x}, {x, y}]

.. m.........’

add x add y

delta-buffer

- b _
= () = {x,y} () cfilters received {x, y}

[}, W)

{X, y}
[{x, Y}]

.-«4,
—
{X1 y }

[{x}, {x, y}]

.. m.........’

add X add y

delta-buffer

- b _
= () = {x,y} () cfilters received {x, y}

e
[{x}, {VH = is there something new?

{X, y}
[{x, Y}]

.-«4,
—
{Xr y }

[{x}, {x, y}]

.. m.........’

add x add y

delta-buffer

- b _
= () = {x,y} () cfilters received {x, y}

e
[{x}, {VH = is there something new?

.. ={x’y} Z {.’13}

{X, y}
[{x, Y}]

.-«4,
—
{Xr y }

[{x}, {x, y}]

.. m.........’

- add y
_______}

delta-buffer

> >
%f } % {x} {X, v} (1) C filters received {x, y}
[] [{x}] [{X}, {v}] = is there something new?
P\ e R " \: .. {z.y} Z {1}
{}
[]

——
= () %
[]

[{x} {x, yH

{Xr y }

=

ok 0 V3!

add X add y
=

delta-buffer

> >
g{ } % i} % x, y} (O cfilters received {x, y}
[] [{x}] [{x}, {V}] = is there something new?

A .. \‘ \: ={CB, y} Z {CL'}

v,——.d/
{Xr y }

[{x}, {X, y}]

.. w.........’

add X add y
=

delta-buffer

> >
g{ } % i} % x, y} (O cfilters received {x, y}
[] [{x}] [{x}, {V}] = is there something new?

A .. \‘ \: ={CB, y} Z {CL'}

v,——.d/
{Xr y }

[{x}, {X, y}]

.. w.........’

decomposition

- example:

decomposition({a, b, c}) = {{a}, {b}, {c}}

decomposition

- example:
decomposition({a, b, c}) = {{a}, {b}, {c}}

- S is a decomposition of x if:

decomposition

- example:
decomposition({a, b, c}) = {{a}, {b}, {c}}

- S is a decomposition of x if:

1. join of S gives x X S1={{b},{c}}

decomposition

- example:
decomposition({a, b, c}) = {{a}, {b}, {c}}
- S is a decomposition of x if:

1. Jjoin of S gives X

2. No element is redundant

SRS
1@ by, 105, 1¢t)

decomposition

- example:

decomposition({a, b, c}) = {{a}, {b},{c}}

- S is a decomposition of x if:

1. join of S gives x X S1={{b},{c}}

2. no element is redundant X So={{a,b},{b},{c}}
3. every element isirreducible X Ss = {{a b}, {c}}

decomposition

- example:
decomposition({a, b, c}) = {{a}, {b},{c}}

- S is a decomposition of x if:

1. join of S gives x X S1={{b},{c}}
2. no element is redundant X So={{a,b}, ﬂ, {c}}
3. every elementisirreducible X S3 = {{a,b},{c}}

v/ Si= ey 0pc);

- example:

decomposition

decomposition({a, b, }) = {{a}, {0}, {e}} = ¥ {a,b,]

- S is a decomposition of x if:

1. Jjoin of S gives X

2. No element is redundant

X S1=11by,1cr}
X So = {{CL, b}v ﬂ_)iv {C}}

3. every elementisirreducible X S3 = {{a,b},{c}}

v 54 = {{a}a {b}7 {C}}

10

decomposition; filter; join
= difference

- example:

decomposition; filter; join
= difference

11

decomposition; filter; join
= difference

- example:

difference({z,y},{x}) = {y}

decomposition; filter; join
- example: = difference
difference({z,y},{z}) ={y} = A({z,y}, {z})

decomposition; filter; join
- example: = difference
difference({z,y},{z}) ={y} = A({z,y}, {z})

Aa,b)=| J{z € Valz b}

decomposition; filter; join
- example: = difference
difference({z, y}, {z}) = {y} = A({z,y},{z})

Aa,b)=| J{z € Valz b}

4 S
4

decomposition; filter; join
- example: = difference
difference({z, y},{z}) = {y} = A({z,y},{z})

4 S

Aa,b)=| J{z € Valz b}

decomposition; filter; join
- example: = difference
difference({z,y},{z}) = {y} = A({z,y},{z})

_ delta-buffer (RR)

S {X, v}

[0, U1

{x,y :
0 {x, y}
......... TN WIS . tac 2/ | NN
{x}

_ delta-buffer (RR)

= (XY}

[{)a:fy}] (1) C removes redundant

e A WX Yl state in received {x, V)
=A({z,y},{r}) = 1y}
{} {X, y}
......... N ey
{x, ‘

12

_ delta-buffer (RR)

= (XY}
... [0l (@ Cremoves redundant
" state in received {x, y}

=AY}, 17}) =)

{X, y}
[{x, Y}]

12

=

= {X,y}

{X, y}
[{x, Y}]

delta-buffer (RR)

[{)a:fy}] (1) C removes redundant

state in received {Xx, v}

=AY}, 17}) =)

= {x,y}
....................... [{x}, W |

12

=

= {X,y}

{X, y}
[{x, Y}]

delta-buffer

[{)a:fy}] (1) C removes redundant

state in received {Xx, v}

=AY}, 17}) =)

= {x,y}
....................... [{x}, W |

12

a
= {X,y}

[}, W)

{} {X, y}

[] [{x, y}]

) % CYCLE FOUND!

delta-buffer

@ C removes redundant
state in received {Xx, v}

=AY}, 17}) =)

'; /

S {X Yy}

v\.
S—— {X, y}

[{x}, {y}]

0000000000000000000000000000000000000 Moo.oooooooo’

12

delta-buffer (BP)

delta-buffer (BP)

13

delta-buffer (BP)

13

delta-buffer (BP)

(1) B should avoid back-propagation of {x}

13

delta-buffer

® B should avoid back-propagation of {x}

13

CRDT set micro-benchmark

- test the effect of cycles in the network topology:

CRDT set micro-benchmark

- test the effect of cycles in the network topology:

tree partial-mesh

N

7\ VRN

/\ /\ /' \ /\

14

CRDT set micro-benchmark

set - tree set - mesh

(14

95 o 80.3 78.8 9 57.6 5.5 55 4

Q. o 77 *

(48] 7, o |

o 0

8- .

o ¥

C 2 - 1 &

-

© S -

7y

£ S o |

P 1 1.8 1 " 1.3 1

E O e e W S OO U T T U O 77777777 ey

state-based delta-based RR

delta-based delta-based BP+RR

delta-based BP

15

CRDT set micro-benchmar

| as state-based

transmission ratio wrto BP+RR

| classic delta-based isasbad |

60 80

40

20

set - tree set - mesh

80.3 78.8 S — °7.6 56.5 55 4

)
q.
o |

— ™
o
N
o _|
- -

1.3 1
" rorr—— (P70 eI 277777777 Ty

| 0

I

T ——

—sTato-based delta-based RR
delta-based delta-based BP+RR
delta-based BP

—

15

CRDT set micro-benchmark

set - tree set - mesh

80

80.3 78.8

\

50 60

60

|\

transmissiorfraffo wrto BP+RR

| BP is enough if no cycles B
 RR needed in the general case | -

|

10 20 30 40

1.3 1

N W LSS LS SLLS S B SINNIINNNNN |

—
—

Z1 delta-based RR
delta-based delta-based BP+RR
delta-based BP

' classic delta-based is as bad ~
| as state-based

15

put sets are easy...

put sets are easy...

for each CRDT composition technique,
there is a decomposition rule

10

put sets are easy...
ce C: Jc={c}
(a,by e A x B: |{a,b) =ax {L}U{L} x|b
(c,a) e CK A: [[{c,a) = {c x |a
Leftac A® B: || Lefta = {Leftv | v € |a}
Rightbe A @ B: || Rightb = {Rightv | v € ||b}
feU=A: |Jf = {k — v | k€ dom(f) Avelf(v)}

for each CRDT composition technique,
there is a decomposition rule

more results in the paper

- counter and map micro-benchmark
- comparison with:

- operation-based CRDTs

- scuttlebutt and scuttlebutt variant
- retwis benchmark

17

more results in the paper

counter and map micro-benchmark
comparison with:

- operation-based CRDTs

- scuttlebutt and scuttlebutt variant
retwis benchmark

optimal delta-mutators
state-based CRDTs are distributive lattices
- (not simply join-semilattices)

17

summary

summary

- identified inefficiencies in delta propagation

18

summary

- identified inefficiencies in delta propagation
- introduced concept of decomposition of state-based CRDTs
- difference (A) between two states

18

summary

- identified inefficiencies in delta propagation

- introduced concept of decomposition of state-based CRDTs
- difference (A) between two states

- proposed BP and RR optimizations
- BP Is enough in acyclic topologies
- RR Is needed In the more general case

18

efficient synchronization
of state-based CRDTs

Vitor Enes, Paulo Sérgio Almeida, Carlos Baguero, Jodo Leitao
9 Apr. 2019 @ ICDE’'19

vitorenes.orqg

W @vitorenesduarte

