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CRDTs
Conflict-free Replicated Data Types 

rich abstraction
- register, counter, set, map, …

- quality of service
why replicate?

no conflicts?!

- automatic conflict resolution
- eventual consistency
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- problem with delta-based: naive delta propagation 

- filter

- solution 
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- results
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CRDT variants

operation-based state-based delta-based

middleware 

guarantees

exactly-once


causal
— —

payload operation full state delta

DELTA

BEST OF BOTH WORLDS!
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main contribution

achieve delta-based true potential 
through careful delta propagation
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state-based CRDTs
- simplest example: set

FILTER JOIN

- state-based: mutators (m) inflate local state

- delta-based: delta-mutators (dm) return deltas

1. joined with local state 
2. added to a delta-buffer (to be propagated)

m({a, b}) = {a, b, c}

dm({a, b}) = {c}
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decomposition; filter; join 
= difference - example:

DECOMPOSITION FILTER

JOIN
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- test the effect of cycles in the network topology: 

tree partial-mesh
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CRDT set micro-benchmark

classic delta-based is as bad 
as state-based 

BP is enough if no cycles 
RR needed in the general case 
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more results in the paper 
- counter and map micro-benchmark 

- comparison with: 

- operation-based CRDTs 

- scuttlebutt and scuttlebutt variant 

- retwis benchmark

- optimal delta-mutators 

- state-based CRDTs are distributive lattices 

- (not simply join-semilattices)
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summary
- identified inefficiencies in delta propagation

- introduced concept of decomposition of state-based CRDTs 

- difference (Δ) between two states

- proposed BP and RR optimizations 

- BP is enough in acyclic topologies 

- RR is needed in the more general case
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